A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Hybrid Transformer-Convolutional Neural Network for Segmentation of Intracerebral Hemorrhage and Perihematomal Edema on Non-Contrast Head Computed Tomography (CT) with Uncertainty Quantification to Improve Confidence. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intracerebral hemorrhage (ICH) and perihematomal edema (PHE) are key imaging markers of primary and secondary brain injury in hemorrhagic stroke. Accurate segmentation and quantification of ICH and PHE can help with prognostication and guide treatment planning. In this study, we combined Swin-Unet Transformers with nnU-NETv2 convolutional network for segmentation of ICH and PHE on non-contrast head CTs. We also applied test-time data augmentations to assess individual-level prediction uncertainty, ensuring high confidence in prediction. The model was trained on 1782 CT scans from a multicentric trial and tested in two independent datasets from Yale (n = 396) and University of Berlin Charité Hospital and University Medical Center Hamburg-Eppendorf (n = 943). Model performance was evaluated with the Dice coefficient and Volume Similarity (VS). Our dual Swin-nnUNET model achieved a median (95% confidence interval) Dice = 0.93 (0.90-0.95) and VS = 0.97 (0.95-0.98) for ICH, and Dice = 0.70 (0.64-0.75) and VS = 0.87 (0.80-0.93) for PHE segmentation in the Yale cohort. Dice = 0.86 (0.80-0.90) and VS = 0.91 (0.85-0.95) for ICH and Dice = 0.65 (0.56-0.70) and VS = 0.86 (0.77-0.93) for PHE segmentation in the Berlin/Hamburg-Eppendorf cohort. Prediction uncertainty was associated with lower segmentation accuracy, smaller ICH/PHE volumes, and infratentorial location. Our results highlight the benefits of a dual transformer-convolutional neural network architecture for ICH/PHE segmentation and test-time augmentation for uncertainty quantification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672977PMC
http://dx.doi.org/10.3390/bioengineering11121274DOI Listing

Publication Analysis

Top Keywords

transformer-convolutional neural
8
neural network
8
network segmentation
8
intracerebral hemorrhage
8
perihematomal edema
8
non-contrast head
8
uncertainty quantification
8
ich phe
8
prediction uncertainty
8
ich dice
8

Similar Publications