Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: This study explored the potential of MCM-48 mesoporous silica matrices as a drug delivery system for metformin hydrochloride, aimed at improving the therapeutic management of type 2 diabetes mellitus. The objectives included the synthesis and characterization of MCM-48, assessment of its drug loading capacity, analysis of drug release profiles under simulated physiological conditions, and the development of a multifractal dynamics-based theoretical framework to model and interpret the release kinetics. : MCM-48 was synthesized using a sol-gel method and characterized by SEM-EDX, TEM, and nitrogen adsorption techniques. Drug loading was performed via adsorption at pH 12 using metformin hydrochloride solutions of 1 mg/mL (P-1) and 3 mg/mL (P-2). In vitro dissolution studies were conducted to evaluate the release profiles in simulated gastric and intestinal fluids. A multifractal dynamics model was developed to interpret the release kinetics. : SEM-EDX confirmed the uniform distribution of silicon and oxygen, while TEM images revealed a highly ordered cubic mesoporous structure. Nitrogen adsorption analyses showed a high specific surface area of 1325.96 m²/g for unloaded MCM-48, which decreased with drug loading, confirming efficient incorporation of metformin hydrochloride. The loading capacities were 59.788 mg/g (P-1) and 160.978 mg/g (P-2), with efficiencies of 99.65% and 89.43%, respectively. In vitro dissolution studies showed a biphasic release profile: an initial rapid release in gastric conditions followed by sustained release in intestinal fluids, achieving cumulative releases of 92.63% (P-1) and 82.64% (P-2) after 14 hours. The multifractal dynamics-based theoretical release curves closely matched the experimental data. : MCM-48 mesoporous silica effectively enhanced metformin delivery, offering a controlled release profile well-suited for type 2 diabetes management. The multifractal theoretical framework provided valuable insights into drug release dynamics, contributing to the advancement of innovative drug delivery systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672948PMC
http://dx.doi.org/10.3390/biomedicines12122838DOI Listing

Publication Analysis

Top Keywords

metformin hydrochloride
16
mcm-48 mesoporous
12
mesoporous silica
12
drug delivery
12
drug loading
12
release
10
drug
8
delivery system
8
system metformin
8
type diabetes
8

Similar Publications

Introduction: This study examines the characteristics of adults with type 2 diabetes (T2D) who were not initially treated with an antihyperglycemic agent (AHA).

Methods: The analyses used Optum de-identified Market Clarity data from January 2013 through September 2023. The US study included nonpregnant adults with T2D who were continuously insured from 1 year prior through 5 years post diagnosis and did not fill a prescription for an AHA in the year after their initial T2D diagnosis.

View Article and Find Full Text PDF

Aortic valve stenosis is a progressive and increasingly prevalent disease in older adults, with no approved pharmacologic therapies to prevent or slow its progression. Although genetic risk factors have been identified, the contribution of epigenetic regulation remains poorly understood. Here, we demonstrated that histone deacetylase 3 (HDAC3) maintains aortic valve structure by suppressing mitochondrial biogenesis and preserving extracellular matrix integrity in valvular interstitial fibroblasts.

View Article and Find Full Text PDF

Background: Emerging evidence indicates that metformin-based combination therapy may offer better glycemic control and improved tolerability compared to diabetes monotherapy. Building on this, vitamin D was considered a potential adjunct to metformin for managing type 2 diabetes. Although vitamin D is primarily recognized for its role in calcium regulation, it also appears to influence glucose metabolism and other non-skeletal functions.

View Article and Find Full Text PDF

Aims: Population-based studies have consistently shown that individuals with diabetes secondary to chronic pancreatitis (pancreatic diabetes) have a high risk of hypoglycaemia. We aimed to investigate whether this risk has declined over recent years following the introduction of modern glucose-lowering medications.

Materials And Methods: In this Danish nationwide population-based cohort study, we included all adults with new-onset diabetes between 1998 and 2022 and classified them as having pancreatic diabetes, type 1, or type 2 diabetes.

View Article and Find Full Text PDF

Background: Imeglimin (Ime), the first in a novel class of antidiabetic agents, has potential therapeutic effects on diabetic peripheral neuropathy (DPN). This study aimed to evaluate and compare the effects on cellular metabolic function and reactive oxygen species (ROS) levels in high glucose-treated mouse Schwann cells (SCs), an DPN model, with those of metformin (Met), a conventional antidiabetic agent known for its beneficial effects on DPN. The roles of PPARα and fatty acid-binding proteins 5 and 7 (FABP5 and FABP7), both of which have been implicated in the pathogenesis of DPN, were also investigated.

View Article and Find Full Text PDF