A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multiple mechanisms of action for an extremely painful venom. | LitMetric

Multiple mechanisms of action for an extremely painful venom.

Curr Biol

Department of Biology, Indiana University, Bloomington, IN 47405, USA; Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA. Electronic address:

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Evolutionary arms races can lead to extremely specific and effective defense mechanisms, including venoms that deter predators by targeting nociceptive (pain-sensing) pathways. The venom of velvet ants (Hymenoptera: Mutillidae) is notoriously painful. It has been described as "Explosive and long lasting, you sound insane as you scream. Hot oil from the deep fryer spilling over your entire hand." The effectiveness of the velvet ant sting against potential predators has been shown across vertebrate orders, including mammals, amphibians, reptiles, and birds. This leads to the hypothesis that velvet ant venom targets a conserved nociception mechanism, which we sought to uncover using Drosophila melanogaster as a model system. Drosophila larvae have peripheral sensory neurons that sense potentially damaging (noxious) stimuli such as high temperature, harsh mechanical touch, and noxious chemicals. They share features with vertebrate nociceptors, including conserved sensory receptor channels. We found that velvet ant venom strongly activated Drosophila nociceptors through heteromeric Pickpocket/Balboa (Ppk/Bba) ion channels, through a single venom peptide, Do6a. Drosophila Ppk/Bba is homologous to mammalian acid-sensing ion channels (ASICs). However, Do6a did not produce behavioral signs of nociception in mice, which was instead triggered by other venom peptides that are non-specific and less potent on Drosophila nociceptors. This suggests that Do6a has an insect-specific function. In fact, we further demonstrated that the velvet ant's sting produced aversive behavior in a predatory praying mantis. Together, our results indicate that velvet ant venom acts through different molecular mechanisms in vertebrates and invertebrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12080746PMC
http://dx.doi.org/10.1016/j.cub.2024.11.070DOI Listing

Publication Analysis

Top Keywords

velvet ant
16
ant venom
12
drosophila nociceptors
8
ion channels
8
venom
7
velvet
6
drosophila
5
multiple mechanisms
4
mechanisms action
4
action extremely
4

Similar Publications