Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). is required for optimal growth of in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure. We characterized its impact on the overall bacterial proteome, and elucidated the molecular mechanisms underlying the effects of Q34 modification in antibiotic translational stress response. Using molecular reporters, we showed that Q34 impacts the efficiency of decoding at tyrosine TAT and TAC codons. Proteomics analyses revealed that the anti-SoxR factor RsxA is better translated in the absence of . RsxA displays a codon bias toward tyrosine TAT and overabundance of RsxA leads to decreased expression of genes belonging to SoxR oxidative stress regulon. We also identified conditions that regulate expression. We propose that regulation of Q34 modification in response to environmental cues leads to translational reprogramming of transcripts bearing a biased tyrosine codon usage. In silico analysis further identified candidate genes which could be subject to such translational regulation, among which DNA repair factors. Such transcripts, fitting the definition of modification tunable transcripts, are central in the bacterial response to antibiotics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703503PMC
http://dx.doi.org/10.7554/eLife.96317DOI Listing

Publication Analysis

Top Keywords

translational reprogramming
8
q34 modification
8
tyrosine tat
8
aminoglycoside tolerance
4
tolerance engages
4
translational
4
engages translational
4
reprogramming associated
4
associated queuosine
4
queuosine trna
4

Similar Publications

Resolve and regulate: Alum nanoplatform coordinating STING availability and agonist delivery for enhanced anti-tumor immunotherapy.

Biomaterials

September 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.

View Article and Find Full Text PDF

Strigolactones modulate jasmonate-dependent transcriptional reprogramming during wound signalling in Arabidopsis.

J Appl Genet

September 2025

Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032, Katowice, Poland.

Mechanical wounding triggers rapid transcriptional and hormonal reprogramming in plants, primarily driven by jasmonate (JA) signalling. While the role of JA, ethylene, and salicylic acid in wound responses is well characterised, the contribution of strigolactones (SLs) remains largely unexplored. Here, for the first time, it was shown that SLs modulate wound-induced transcriptional dynamics in Arabidopsis thaliana.

View Article and Find Full Text PDF

Bibliometric analysis of immune-related acute kidney injury induced by cancer immunotherapy (2000-2025).

Naunyn Schmiedebergs Arch Pharmacol

September 2025

Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.

Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy but are increasingly linked to immune-related kidney injury (irKI). This study presents the first bibliometric analysis of irKI research (2000-2025), aiming to identify key trends, mechanistic insights, and pharmacological risk factors. We analyzed 2,179 publications to understand the evolution of irKI research, focusing on areas like T cell-mediated tubular injury, immune system-driven inflammation, and changes in metabolism.

View Article and Find Full Text PDF

Mitoribosome-Targeting Antibiotics Suppress Osteoclastogenesis and Periodontitis-Induced Bone Loss by Blocking Mitochondrial Protein Synthesis.

FASEB J

September 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials

The onset and progression of periodontitis are closely related to metabolic reprogramming in the periodontal microenvironment, with osteoclasts playing a critical role in tissue destruction. Single-cell RNA sequencing (scRNA-seq) of periodontal tissues from healthy individuals and patients with severe chronic periodontitis revealed a significant increase in the expression of mitochondrial-related genes during osteoclast differentiation, suggesting the critical role of mitochondrial function in this process. This study investigates the potential of the novel mitoribosome-targeting antibiotic radezolid in inhibiting osteoclast differentiation.

View Article and Find Full Text PDF

Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.

View Article and Find Full Text PDF