A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Motif-aware curriculum learning for node classification. | LitMetric

Motif-aware curriculum learning for node classification.

Neural Netw

School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China. Electronic address:

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Node classification, seeking to predict the categories of unlabeled nodes, is a crucial task in graph learning. One of the most popular methods for node classification is currently Graph Neural Networks (GNNs). However, conventional GNNs assign equal importance to all training nodes, which can lead to a reduction in accuracy and robustness due to the influence of complex nodes information. In light of the potential benefits of curriculum learning, some studies have proposed to incorporate curriculum learning into GNNs , where the node information can be acquired in an orderly manner. Nevertheless, the existing curriculum learning-based node classification methods fail to consider the subgraph structural information. To address this issue, we propose a novel approach, Motif-aware Curriculum Learning for Node Classification (MACL). It emphasizes the role of motif structures within graphs to fully utilize subgraph information and measure the quality of nodes, supporting an organized learning process for GNNs. Specifically, we design a motif-aware difficulty measurer to evaluate the difficulty of training nodes from different perspectives. Furthermore, we have implemented a training scheduler to introduce appropriate training nodes to the GNNs at suitable times. We conduct extensive experiments on five representative datasets. The results show that incorporating MACL into GNNs can improve the accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.107089DOI Listing

Publication Analysis

Top Keywords

node classification
20
curriculum learning
16
training nodes
12
motif-aware curriculum
8
learning node
8
learning
6
node
6
nodes
6
gnns
6
classification
5

Similar Publications