Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Node classification, seeking to predict the categories of unlabeled nodes, is a crucial task in graph learning. One of the most popular methods for node classification is currently Graph Neural Networks (GNNs). However, conventional GNNs assign equal importance to all training nodes, which can lead to a reduction in accuracy and robustness due to the influence of complex nodes information. In light of the potential benefits of curriculum learning, some studies have proposed to incorporate curriculum learning into GNNs , where the node information can be acquired in an orderly manner. Nevertheless, the existing curriculum learning-based node classification methods fail to consider the subgraph structural information. To address this issue, we propose a novel approach, Motif-aware Curriculum Learning for Node Classification (MACL). It emphasizes the role of motif structures within graphs to fully utilize subgraph information and measure the quality of nodes, supporting an organized learning process for GNNs. Specifically, we design a motif-aware difficulty measurer to evaluate the difficulty of training nodes from different perspectives. Furthermore, we have implemented a training scheduler to introduce appropriate training nodes to the GNNs at suitable times. We conduct extensive experiments on five representative datasets. The results show that incorporating MACL into GNNs can improve the accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2024.107089 | DOI Listing |