98%
921
2 minutes
20
Single cell studies have transformed our understanding of cellular heterogeneity in disease but the need for fresh starting material can be an obstacle, especially in the context of international multicenter studies and archived tissue. We developed a protocol to obtain high-quality cells and nuclei from dissected human skeletal muscle archived in the preservative Allprotect® Tissue Reagent. After fluorescent imaging microscopy confirmed intact nuclei, we performed four protocol variations that compared sequencing metrics between cells and nuclei enriched by either filtering or flow cytometry sorting. Cells and nuclei (either sorted or filtered) produced statistically identical transcriptional profiles and recapitulated 8 cell types present in skeletal muscle. Flow cytometry sorting successfully enriched for higher-quality cells and nuclei but resulted in an overall decrease in input material. Our protocol provides an important resource for obtaining high-quality single cell genomic material from archived tissue and to streamline global collaborative efforts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700216 | PMC |
http://dx.doi.org/10.1038/s42003-024-07445-2 | DOI Listing |
Sci Adv
September 2025
Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
Cell type-specific regulatory programs that drive type 1 diabetes (T1D) in the pancreas are poorly understood. Here, we performed single-nucleus multiomics and spatial transcriptomics in up to 32 nondiabetic (ND), autoantibody-positive (AAB), and T1D pancreas donors. Genomic profiles from 853,005 cells mapped to 12 pancreatic cell types, including multiple exocrine subtypes.
View Article and Find Full Text PDFPLoS One
September 2025
Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America.
The study of plant biology has traditionally focused on investigations conducted at the tissue, organ, or whole plant level. However, single-cell transcriptomics has recently emerged as an important tool for plant biology, enabling researchers to uncover the expression profiles of individual cell types within a tissue. The application of this tool has revealed new insights into cell-to-cell gene expression heterogeneity and has opened new avenues for research in plant biology.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34051, Republic of Korea.
Microscopic examination of biopsy tissues remains essential for cancer diagnosis, despite advancements in sequencing technologies. Alterations in nuclear size or the nuclear-to-cytoplasmic ratio are hallmark features of cancer cells and often correlate with disease progression. However, the mechanisms underlying nuclear size abnormalities and their impact on tumor progression remain unclear.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
High-mobility group box protein 1 (HMGB1) is a chromatin-associated nonhistone protein widely distributed in the nucleus of eukaryotic cells. It is transported extracellularly as a proinflammatory mediator or late warning protein to induce immune and inflammatory reactions upon stimuli such as microbial infection. Here, we have found that HMGB1 directly interacts with bacterial DNA analogue CpG-A in the extracellular environment to undergo liquid-liquid phase separation (LLPS) via its positively charged DNA-binding domain.
View Article and Find Full Text PDFElife
September 2025
Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.
Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hr after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity.
View Article and Find Full Text PDF