Genome-wide identification and expression patterns of uridine diphosphate (UDP)-glycosyltransferase genes in the brown planthopper, Nilaparvata lugens.

Comp Biochem Physiol Part D Genomics Proteomics

Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China. Electronic address:

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Uridine diphosphate-glycosyltransferases (UGTs) are responsible for glycosylation by combining various small lipophilic molecules with sugars to produce water-soluble glycosides, which are crucial for the metabolism of plant secondary metabolites and detoxification in insects. This study presents a genome-wide analysis of the UGT gene family in the brown planthopper, Nilaparvata lugens, a destructive insect pest of rice in Asia. Based on the similarity to UGT homologs from other organisms, 20 putative NlUGT genes were identified in N. lugens. Sequence analysis revealed an average amino acid identity of 45.64 %; however, catalytic and sugar-binding residues, along with UGT signature motifs, were highly conserved. Phylogenetic analysis showed that the 20 NlUGTs were clustered into three main groups. The motif numbers ranged from 5 to 10, with motifs 1 and 4 being found in the functional domains of all 20 NlUGT proteins. Tandem and segmental duplication analysis identified one tandem duplication pair (UGT386K7 and UGT386K8) and two pairs of collinearity genes (UGT362C6/UGT386J4 and UGT386C2/UGT386G5) that expanded through segmental duplication within the UGT gene family of N. lugens. Combining the transcriptome and real-time quantitative PCR data showed that gut, antennae, integument, and ovaries were the tissues enriched with NlUGT gene expression. Six NlUGTs were present mainly in the gut, suggesting their putative roles in detoxification. This research provides valuable information on the molecular and genetic basis of NlUGTs, establishing a solid foundation for subsequent functional investigations of UGTs in planthopper, as well as paving the way for identifying potential targets to manage N. lugens effectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbd.2024.101403DOI Listing

Publication Analysis

Top Keywords

brown planthopper
8
planthopper nilaparvata
8
nilaparvata lugens
8
ugt gene
8
gene family
8
segmental duplication
8
lugens
5
genome-wide identification
4
identification expression
4
expression patterns
4

Similar Publications

Knockdown of Clavesin family genes NlClvs1l, NlClvs1t, and NlClvs2l in Nilaparvata lugens reveals their potential as novel targets for pest control strategies.

Pestic Biochem Physiol

November 2025

Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, School of Life Sciences, China Jiliang University, Hangzhou 310018, China. Electronic a

The brown planthopper (BPH) Nilaparvata lugens is one of the most destructive pests of rice, and its management has primarily relied on chemical insecticides. Currently, the chemical management of BPH is facing challenges due to the development of pesticide resistance. RNA interference (RNAi) provides attractive alternative to chemical insecticides, provided that suitable target genes are identified.

View Article and Find Full Text PDF

The fungicide jinggangmycin stimulates fecundity of Nilaparvata lugens Stål via ILP/Foxo signaling.

Pestic Biochem Physiol

November 2025

College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Jiangsu Province Engineering Research Center of Green Pesticides, Yangzhou University, Yangzhou 225009, China. Electronic address:

The brown planthopper (BPH), Nilaparvata lugens is a typical pesticide-induced resurgent rice pest. A previous study showed that a fungicide, jinggangmycin (JGM)-treated rice led to markedly increased sugar content and (Insulin-like Peptide 2) ILP2 in response to sugar-mediated TOR signaling and stimulated fecundity in BPH. However, the role of the other ILPs in response to types of carbohydrate compounds remained poorly understood.

View Article and Find Full Text PDF

The brown planthopper (BPH), Nilaparvata lugens (Stål), is a typical insecticide-induced resurgence rice pest that causes severe damage to rice in Asian countries. Previous studies have shown that the fungicide Jinggangmycin (JGM), used to control rice sheath blight disease, can stimulate BPH fecundity; however, the molecular mechanism remains to be further explored. In this study, based on transcriptomic analysis, we found that the PI3K-Akt signaling pathway was significantly enriched in BPH after feeding on JGM-treated rice, where the NlPR-L and NlABD4-L genes were significantly upregulated.

View Article and Find Full Text PDF

Identification of novel QTL associated with whitebacked planthopper (WBPH) and brown planthopper (BPH) resistance in the rice line RP2068.

Gene

September 2025

Agri Biotech Foundation, Rajendranagar, Hyderabad 500 030 TS, India; Present address, Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 57922, Republic of Korea. Electronic address:

This study aimed to identify QTL governing three traits of the resistance against the two planthoppers such as damage score (DS), nymphal survival (NS) and days to wilt (DW) using the 94 RIL population derived from the cross TN1/RP2068 utilizing 125 SSR and 1500 SNP markers. In case of the whitebacked planthopper (WBPH) five major and three minor QTL while for the brown planthopper (BPH) four major and seven minor QTL were identified to be associated with these three traits. Two major QTL, each on chromosomes 1 and 2, were responsible for DS and NS against WBPH accounted for 25% and 16% of the phenotypic variance (PVE).

View Article and Find Full Text PDF