98%
921
2 minutes
20
Background: Understanding midfoot joint kinetics is valuable for improved treatment of foot pathologies. Segmental foot kinetics cannot currently be obtained in a standard gait lab without the use of multiple force plates or a pedobarographic plate overlaid with a force plate due to the single ground reaction force (GRF) vector.
Research Question: Can an algorithm be created to distribute the GRF into multiple segmental vectors that will allow for calculation of accurate midfoot and ankle moments?
Methods: 20 pediatric subjects (10 typically developing, 10 with foot pathology) underwent multi-segment foot gait analysis using the Milwaukee Foot Model. A novel force distribution algorithm (FDA) was developed to proportionally divide the GRF into segmental vectors based on the location of the center of pressure and these vectors were used to calculate midfoot and ankle moments with an inverse dynamic approach. FDA GRF segmental vectors and midfoot/ankle moments were compared to metrics obtained from a previously validated pedobarographic plate methodology using correlations, statistical parametric mapping, and effect size with 95 % confidence intervals.
Results: All force distributions and midfoot/ankle moments waveforms were highly correlated with R> 0.99 for hindfoot and forefoot forces, R> 0.99 for sagittal and transverse plane moments, and R> 0.95 for coronal plane moments. No statistical differences were found during 2nd rocker where the FDA was applied.
Significance: Midfoot and ankle moments can be accurately obtained with our algorithm using standard equipment utilized in clinical and research motion analysis labs without the requirement of additional trials, or targeted walking by patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2024.12.019 | DOI Listing |
Clin Ophthalmol
September 2025
Alaska Blind Child Discovery, Alaska Children's EYE & Strabismus, Anchorage, Alaska, 99508, USA.
Background: Portable sphero-cylinder refraction is useful for remote medical missions and self-checking. A novel, inexpensive, handheld optical scope with an internal vision chart and adjustable diopter lens, called the Moptim MRT-200, was therefore validated.
Methods: Young, capable patients from a pediatric eye practice had dry refraction estimates with the Moptim MRT-200, Adaptica 2WIN photoscreener, and Monocular Retinomax compared with actual refined retinoscopy.
Biomed Phys Eng Express
September 2025
electrical engineering department, Indian Institute of Technology Roorkee, Research wing, electrical department, Roorkee, uttrakhand, 247664, INDIA.
Imagined speech classification involves decoding brain signals to recognize verbalized thoughts or intentions without actual speech production. This technology has significant implications for individuals with speech impairments, offering a means to communicate through neural signals. The prime objective of this work is to propose an innovative machine learning (ML) based classification methodology that combines electroencephalogram (EEG) data augmentation using a sliding window technique with statistical feature extraction from the amplitude and phase spectrum of frequency domain EEG segments.
View Article and Find Full Text PDFJ Refract Surg
September 2025
Purpose: To evaluate tilt, decentration, and axial stability of the Clareon toric intraocular lens (TIOL) (CNW0T3-9; Alcon Laboratories, Inc) over a 6-month follow-up period.
Methods: A single-center, prospective, interventional clinical trial was conducted with a study population of 130 eyes from 82 patients who received a Clareon TIOL. Tilt, decentration, and the aqueous depth were determined preoperatively and at 1 week and 6 months postoperatively using anterior segment optical coherence tomography (Casia 2; Tomey Corporation).
Am J Ophthalmol
September 2025
Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Duke-NUS Graduate Medical School, Singapore; Department of Ophthalmology, Emory University School of Medicine, Emory University; Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta
Purpose: To characterize the 3D structural phenotypes of the optic nerve head (ONH) in patients with glaucoma, high myopia, and concurrent high myopia and glaucoma, and to evaluate their variations across these conditions.
Design: Retrospective cross-sectional study.
Participants: A total of 685 optical coherence tomography (OCT) scans from 754 subjects of Singapore-Chinese ethnicity, including 256 healthy (H), 94 highly myopic (HM), 227 glaucomatous (G), and 108 highly myopic with glaucoma (HMG) cases METHODS: We segmented the retinal and connective tissue layers from OCT volumes and their boundary edges were converted into 3D point clouds.
J Oncol Pharm Pract
September 2025
Department of Research & Development, Squad Medicine and Research (SMR), Amadalavalasa, Andhra Pradesh, India.
Cancer vaccines represent a transformative shift in oncology, aiming to prevent malignancies or treat established cancers by training the immune system to recognize tumor-specific or tumor-associated antigens. This review explores the diverse platforms and mechanisms supporting cancer vaccines, ranging from prophylactic vaccines such as HPV and hepatitis B vaccines that have significantly reduced virus-related cancers to therapeutic vaccines like Sipuleucel-T and T-VEC that extend survival in prostate cancer and melanoma. Vaccine types are classified, and delivery platforms including mRNA, peptide, dendritic cell and viral vector-based approaches are examined alongside pivotal clinical trial outcomes.
View Article and Find Full Text PDF