A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The function of SnRK1 in regulating darkness-induced leaf senescence in cucumber. | LitMetric

The function of SnRK1 in regulating darkness-induced leaf senescence in cucumber.

Plant Physiol Biochem

College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Fruit and Vegetable Biology and Germplasm Enhancement, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, S

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SnRK1 (SNF1-related kinase 1), a member of the SNF1 protein kinase superfamily, has been demonstrated to play a role in plant growth and development, as well as in stress responses. In this experiment, the leaf senescence of 'Xintaimici' cucumber was simulated by dark treatment and studied using SnRK1 activator/inhibitor and transient transformation technology. The effects of SnRK1 on cucumber leaf senescence, reactive oxygen species (ROS) metabolism, chloroplast structure, and photosynthetic characteristics were studied. The results demonstrated that the CsSnRK1 gene in cucumber leaves responded to dark-induced senescence. Furthermore, alterations in SnRK1 activity/expression affected the dark-induced leaf senescence process. Specifically, the activation of SnRK1 activity/expression can inhibit membrane lipid peroxidation by reducing the accumulation of ROS in leaves, slowing the decomposition of chloroplasts, repairing damage to photosystem II in leaves, delaying the senescence of leaves, and improving the photosynthetic capacity of leaves. Conversely, the inhibition of SnRK1 activity/expression had the opposite effect. These findings underscore the inhibitory role of SnRK1 in dark-induced cucumber leaf senescence. Our findings clarified the role of SnRK1 in regulating cucumber leaf senescence as well as its underlying physiological mechanisms, and will aid future studies of the molecular mechanism by which SnRK1 regulates cucumber leaf senescence.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.109468DOI Listing

Publication Analysis

Top Keywords

leaf senescence
28
cucumber leaf
16
snrk1 activity/expression
12
senescence
9
snrk1
9
snrk1 regulating
8
role snrk1
8
leaf
7
cucumber
7
leaves
5

Similar Publications