98%
921
2 minutes
20
Neuroligins are postsynaptic cell-adhesion molecules that regulate synaptic function with a remarkable isoform specificity. Although Nlgn1 and Nlgn2 are highly homologous and biochemically interact with the same extra- and intracellular proteins, Nlgn1 selectively functions in excitatory synapses whereas Nlgn2 functions in inhibitory synapses. How this excitatory/inhibitory (E/I) specificity arises is unknown. Using a comprehensive structure-function analysis, we here expressed wild-type and mutant neuroligins in functional rescue experiments in cultured hippocampal neurons lacking all endogenous neuroligins. Electrophysiology confirmed that Nlgn1 and Nlgn2 selectively restored excitatory and inhibitory synaptic transmission, respectively, in neuroligin-deficient neurons, aligned with their synaptic localizations. Chimeric Nlgn1-Nlgn2 constructs reveal that the extracellular neuroligin domains confer synapse specificity, whereas their intracellular sequences are exchangeable. However, the cytoplasmic sequences of Nlgn2, including its Gephyrin-binding motif that is identically present in the Nlgn1, is essential for its synaptic function whereas they are dispensable for Nlgn1. These results demonstrate that although the excitatory vs. inhibitory synapse specificity of Nlgn1 and Nlgn2 are both determined by their extracellular sequences, these neuroligins enable normal synaptic connections via distinct intracellular mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811269 | PMC |
http://dx.doi.org/10.1038/s44319-024-00286-4 | DOI Listing |
Mol Brain
March 2025
Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
Neurexins are presynaptic plasma membrane proteins that regulate key aspects of synapse physiology through the formation of transcellular complexes with postsynaptic ligands, including neuroligins (Nlgns). Each neurexin gene (NRXN1-3) generates two main alternative-spliced transcripts that generate alpha and beta-Nrxn isoforms differing in their extracellular domains. Mutations in NRXN1 are associated with autism and other neurodevelopmental disorders.
View Article and Find Full Text PDFEMBO Rep
February 2025
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
Neuroligins are postsynaptic cell-adhesion molecules that regulate synaptic function with a remarkable isoform specificity. Although Nlgn1 and Nlgn2 are highly homologous and biochemically interact with the same extra- and intracellular proteins, Nlgn1 selectively functions in excitatory synapses whereas Nlgn2 functions in inhibitory synapses. How this excitatory/inhibitory (E/I) specificity arises is unknown.
View Article and Find Full Text PDFBiomolecules
June 2023
School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC 3083, Australia.
Mutations in the Neuroligin-3 () gene are implicated in autism spectrum disorder (ASD) and gastrointestinal (GI) dysfunction, but cellular expression in the enteric nervous system remains to be characterised. We combined RNAScope in situ hybridization and immunofluorescence to measure mRNA expression in cholinergic and VIP-expressing submucosal neurons, nitrergic and calretinin-containing myenteric neurons and glial cells in both WT and mutant mice. We measured mRNA neuronal and glial expression via quantitative three-dimensional image analysis.
View Article and Find Full Text PDFRes Dev Disabil
August 2023
Department of Medical genetics, Tehran medical sciences branch, Islamic Azad University, Tehran, Iran. Electronic address:
Background: Autism spectrum disorder (ASD) is a complex neurodevelopment disorder with social and communicational deficiency, language impairment, and ritualistic behaviors. Attention deficit hyperactivity disorder (ADHD) is a pediatric psychiatric disorder with symptoms, including attention deficit, hyperactivity, and impulsiveness. ADHD is a childhood-onset disorder that can persist into adult life.
View Article and Find Full Text PDFBrain Behav Immun
July 2023
Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan.
The molecular pathological mechanisms underlying schizophrenia remain unclear; however, genomic analysis has identified genes encoding important risk molecules. One such molecule is neurexin 1α (NRXN1α), a presynaptic cell adhesion molecule. In addition, novel autoantibodies that target the nervous system have been found in patients with encephalitis and neurological disorders.
View Article and Find Full Text PDF