A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Simple A-D-A Nonfullerene Acceptors for Efficient Binary Bulk Heterojunction Organic Solar Cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two new nonfused ring nonfullerene electron acceptors, NFAs, (dicarbazolyl)bis(2-(3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile) () and -(2-(5,6-fluoro-3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile) (), thus exhibiting an A-D-A motif, were synthesized and characterized. As thin films, they exhibit the lowest energy absorption signature near 540 nm, extending down to ∼700 nm. This band is due to an intramolecular charge transfer process from the (nonfused dicarbazoyl; ) moiety to the malononitrile-based units () based on density functional theory calculations (DFT), which are also corroborated by time-dependent DFT (TDDFT) computations. Both NFAs fluoresce in the near-IR region exhibiting a band maximum peaking near 750 nm with biphasic lifetimes in the 75-410 ps time scale. Electrochemical measurements permitted the determination of their HOMO (∼-5.7 eV) and LUMO (∼-4.0 eV) energies. The absorption bands are complementary to those of the commercial copolymer , which was used to prepare binary blends for photovoltaic cell performance assessments (ITO/PEDOT:PSS/active layer/PFN-Br/Ag). The power conversion efficiencies (PCE) are found to be 10.17% for / (short-circuit current = 15.87 mA cm; open-circuit voltage = 1.03 V; fill factor FF = 0.622) and 14.09% for / ( = 20.92 mA cm; = 0.965 V; FF = 0.698). The use of nonfused ring NFAs achieving such high performances is significant and reveals a path toward simpler NFAs for use in organic photovoltaics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c19947DOI Listing

Publication Analysis

Top Keywords

nonfused ring
8
simple a-d-a
4
a-d-a nonfullerene
4
nonfullerene acceptors
4
acceptors efficient
4
efficient binary
4
binary bulk
4
bulk heterojunction
4
heterojunction organic
4
organic solar
4

Similar Publications