Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Painful diabetic neuropathy commonly affects the peripheral nervous system in individuals with diabetes. However, the pathological processes and mechanisms underlying diabetic neuropathic pain remain unclear. We aimed to identify the overall profiles and screen for genes potentially involved in pain mechanisms using transcriptome analysis of the dorsal root ganglion of diabetic mice treated with streptozotocin (STZ). Using RNA sequencing, we identified differentially expressed genes between streptozotocin-treated diabetic mice and controls, focusing on altered GABAergic neuron-related genes and inflammatory pathways. Behavioral and molecular analyses revealed a marked reduction in GABAergic neuronal markers (GAD65, GAD67, VGAT) and increased pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) in the diabetic group compared with controls. Intrathecal administration of lentiviral vectors expressing transcription factors Ascl1 and Lhx6 reversed pain hypersensitivity and restored normal expression of GABAergic genes and inflammatory mediators. Protein-protein interaction network analysis revealed five key proteins influenced by Ascl1 and Lhx6 treatment, including those in the JunD/FosB/C-fos signaling pathway. These findings suggest that Ascl1 and Lhx6 mitigate diabetic neuropathic pain by modulating GABAergic neuronal function, pro-inflammatory responses, and pain-related channels (TRPV1, Nav1.7). These results provide a basis for developing transcription factor-based therapies targeting GABAergic neurons for diabetic neuropathic pain relief.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852955PMC
http://dx.doi.org/10.1016/j.ymthe.2024.12.039DOI Listing

Publication Analysis

Top Keywords

gabaergic neuronal
12
diabetic mice
12
diabetic neuropathic
12
neuropathic pain
12
ascl1 lhx6
12
neuronal function
8
diabetic
8
genes inflammatory
8
gabaergic
6
pain
5

Similar Publications

Vanadium (V) is a trace element in the environment; it is detected in soil, water, air, dust, and food products. V-containing compounds have shown therapeutic potential in the treatment of diabetes. However, studies on the effects of V on animal behavior remain limited and sporadic.

View Article and Find Full Text PDF

Objectives: To investigate the role of a neural pathway from oxytocin (OXT) neurons in the hypothalamic paraventricular nucleus (PVN) to γ-aminobutyric acid (GABA) neurons in the trigeminal nucleus caudalis (TNC) in regulating pain sensitization in a mouse model of chronic migraine and to explore the underlying mechanisms.

Methods: A chronic migraine model was established by intraperitoneal injection of nitroglycerin (NTG, 10 mg/kg) on days 1, 3, 5, 7, and 9. The study consisted of four parts: PartⅠ: Wild-type C57BL/6J mice were divided into 4 groups (=6 in each), receiving single or repeated injection of NTG or saline, respectively.

View Article and Find Full Text PDF

The paraventricular thalamic nucleus (PVT) integrates subcortical signals related to arousal, stress, addiction, and anxiety with top-down cortical influences. Increases or decreases in PVT activity exert profound, long-lasting effects on behavior related to motivation, addiction and homeostasis. Yet the sources of its subcortical excitatory and inhibitory afferents, their distribution within the PVT, and their integration with layer-specific cortical inputs remain unclear.

View Article and Find Full Text PDF

Although glutamatergic and GABAergic synapses are important in seizure generation, the contribution of non-synaptic ionic and electrical mechanisms to synchronization of seizure-prone hippocampal neurons remains unclear. Here, we developed a physiologically relevant model to study these mechanisms by inducing prolonged seizure-like discharges (SLDs) in hippocampal slices from male rats through modest, sustained ionic manipulations. Specifically, we reduced extracellular calcium to 0.

View Article and Find Full Text PDF

Chronic treatment with fluoxetine, a widely prescribed selective serotonin reuptake inhibitor (SSRI), is known to promote neural plasticity. The role of fluoxetine in plasticity has been particularly tied to parvalbumin-positive interneurons, a key population of GABAergic neurons that regulate inhibitory tone and network stability. While our previous studies have highlighted fluoxetine-induced plasticity in the visual cortex and hippocampus, its cell-type-specific effects in the prefrontal cortex (PFC) remain unclear.

View Article and Find Full Text PDF