Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The translation of cell-derived extracellular vesicles (EVs) into biogenic gene delivery systems is limited by relatively inefficient loading strategies. In this work, the loading of various nucleic acids into small EVs via their spontaneous hybridization with preloaded non-lamellar liquid crystalline lipid nanoparticles (LCNPs), forming hybrid EVs (HEVs) is described. It is demonstrated that LCNPs undergo pH-dependent structural transitions from inverse hexagonal (H) phases at pH 5 to more disordered non-lamellar phases, possibly inverse micellar (L) or sponge (L) phases, at pH 7.4, which are particularly suitable for inducing a controlled hybridization process with EVs. State-of-the-art single-particle analysis techniques reveal that LCNPs interact with various EV subpopulations at physiological conditions and that ≈40% of HEVs are loaded with the genetic cargo. Importantly, this study demonstrates that EV membrane proteins remain accessible on HEV surfaces, with their intrinsic enzymatic activity unaffected after the hybridization process. Finally, HEVs show in vitro improved transfection efficiencies compared to unhybridized LCNPs. In summary, this versatile platform holds potential for loading various nucleic acid molecules into native EVs and may help developing EV-based therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848734 | PMC |
http://dx.doi.org/10.1002/advs.202404860 | DOI Listing |