A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Loading of Extracellular Vesicles with Nucleic Acids via Hybridization with Non-Lamellar Liquid Crystalline Lipid Nanoparticles. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The translation of cell-derived extracellular vesicles (EVs) into biogenic gene delivery systems is limited by relatively inefficient loading strategies. In this work, the loading of various nucleic acids into small EVs via their spontaneous hybridization with preloaded non-lamellar liquid crystalline lipid nanoparticles (LCNPs), forming hybrid EVs (HEVs) is described. It is demonstrated that LCNPs undergo pH-dependent structural transitions from inverse hexagonal (H) phases at pH 5 to more disordered non-lamellar phases, possibly inverse micellar (L) or sponge (L) phases, at pH 7.4, which are particularly suitable for inducing a controlled hybridization process with EVs. State-of-the-art single-particle analysis techniques reveal that LCNPs interact with various EV subpopulations at physiological conditions and that ≈40% of HEVs are loaded with the genetic cargo. Importantly, this study demonstrates that EV membrane proteins remain accessible on HEV surfaces, with their intrinsic enzymatic activity unaffected after the hybridization process. Finally, HEVs show in vitro improved transfection efficiencies compared to unhybridized LCNPs. In summary, this versatile platform holds potential for loading various nucleic acid molecules into native EVs and may help developing EV-based therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848734PMC
http://dx.doi.org/10.1002/advs.202404860DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
nucleic acids
8
non-lamellar liquid
8
liquid crystalline
8
crystalline lipid
8
lipid nanoparticles
8
loading nucleic
8
hybridization process
8
evs
5
loading
4

Similar Publications