Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Electrical stimulation of peripheral nerves via implanted electrodes has been shown to be a promising approach to restore sensation, movement, and autonomic functions across a wide range of illnesses and injuries. While in principle computational models of neuromodulation can allow the exploration of large parameter spaces and the automatic optimization of stimulation devices and strategies, their high time complexity hinders their use on a large scale. We recently proposed the use of machine learning-based surrogate models to estimate the activation of nerve fibers under electrical stimulation, producing a considerable speed-up with respect to biophysically accurate models of fiber excitation while retaining good predictivity. Here, we characterize the performance of four frequently employed machine learning algorithms and provide an illustrative example of their ability to generalize to unseen stimulation protocols, stimulating sites, and nerve sections. We then discuss how the ability to generalize to such scenarios is relevant to different optimization protocols, paving the way for the automatic optimization of neuromodulation applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683760 | PMC |
http://dx.doi.org/10.1002/bem.22535 | DOI Listing |