98%
921
2 minutes
20
Herein hyperbranched polyethyleneimine (hPEI) cryogels are reported for the selective and reversible adsorption of elemental chlorine. The cryogels are prepared in an aqueous solution by crosslinking with glutaraldehyde at subzero temperatures. The final macroporous composites bearing ammonium chloride groups are obtained after freeze-drying. The cryogels CG1[Cl]-CG3[Cl] adsorb chlorine with capacities of 0.22-0.26 g Cl/g cryogel as an average over three adsorption-desorption cycles. The adsorption process is based on the reversible and selective halogen bonding of chlorides (Cl) with chlorine (Cl) forming the corresponding trichloride ([Cl]) species, indicated by Raman spectroscopy. The reversibility of chlorine adsorption is shown by applying heat and vacuum to the loaded cryogel CG1[Cl] releasing 63% of the adsorbed chlorine within 3 h and 72% within 16 h. The unique ability to selectively adsorb chlorine in the presence of other gases is successfully employed for the selective adsorption of chlorine from a gas mixture, potentially enabling the recycling of chlorine from tail gas streams.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848583 | PMC |
http://dx.doi.org/10.1002/advs.202414274 | DOI Listing |
J Control Release
September 2025
School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China; Dongguan Liaobu Hospital, Dongguan 523400, Guangdong, China. Electronic address:
Fluorine-19 magnetic resonance imaging (F MRI) offers distinct advantages, including background-free signal detection, quantitative analysis, and deep tissue penetration. However, its application is currently limited by challenges associated with existing F MRI contrast agents, such as short transverse relaxation times (T), limited imaging sensitivity, and suboptimal biocompatibility. To overcome these limitations, a glutathione (GSH)-responsive triblock copolymer (PB7), featuring self-immolative characteristics, has been developed.
View Article and Find Full Text PDFJ Org Chem
September 2025
Department of Chemistry and Biochemistry, The University of Tulsa, 800 S. Tucker Dr., Tulsa, Oklahoma 74104, United States.
A screening of organic dyes has led to the discovery of gallocyanine as an organocatalyst for the halogenation of a variety of functionalized pyrazoles, indazoles, and aromatics. This work provides an example of a mild organocatalyst that does not require light, oxidizing agents, transition-metal activation, or high temperatures. Thirty-nine halogenated pyrazoles and indazoles, including pharmaceuticals such as celecoxib, deracoxib, and antipyrine, have been isolated in good to excellent yields using -halosuccinimides as the stoichiometric halogen source with gallocyanine as the catalyst.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
We present a systematic high-pressure investigation of the chlorine-functionalized two-dimensional hybrid perovskite (ClPMA)PbI, integrating high-pressure synchrotron powder X-ray diffraction (HP-PXRD), photoluminescence spectroscopy (HP-PL), and first-principles density functional theory (DFT) calculations. Under hydrostatic compression up to 6.18 (±0.
View Article and Find Full Text PDFACS Catal
August 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
Chlorinated hydrocarbons are widely used as solvents and synthetic intermediates, but their chemical persistence can cause hazardous environmental accumulation. Haloalkane dehalogenase from (DhlA) is a bacterial enzyme that naturally converts toxic chloroalkanes into less harmful alcohols. Using a multiscale approach based on the empirical valence bond method, we investigate the catalytic mechanism of 1,2-dichloroethane dehalogenation within DhlA and its mutants.
View Article and Find Full Text PDFACS Electrochem
September 2025
Department of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Bipolar membranes (BPMs) are increasingly recognized as a promising electrolyte option for water electrolysis, attributable to their distinctive properties derived from the membrane's layered structure, which consists of an anion exchange (AEL) and a cation exchange layer (CEL). This study investigates four different BPMs and the influence they have on the performance of a water electrolysis cell under two different feed configurations: (1) a symmetric deionized water feed to both anode and cathode compartments and (2) an asymmetric feed with a 0.5 mol/L NaCl catholyte feed and a deionized water anolyte feed.
View Article and Find Full Text PDF