Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The tumour microenvironment significantly influences the clinical response of patients to therapeutic immune checkpoint inhibition (ICI), but a comprehensive understanding of the underlying immune-regulatory proteome is still lacking.

Objectives: To decipher targetable biologic processes that determine tumour-infiltrating lymphocytes (TiLs) as a cellular equivalent of clinical response to ICI.

Methods: We mapped the spatial distribution of proteins in TiL-enriched vs. TiL-low compartments in melanoma by combining microscopy, matrix-assisted laser desorption mass spectrometry imaging and liquid chromatography-mass spectrometry, as well as computational data mining. Pharmacological modulation of sirtuin 1 (SIRT1) activity in syngeneic mouse models was used to evaluate the efficacy of pharmacological SIRT1 activation in two syngeneic melanoma mouse models, one known to be α-programmed cell death protein 1 (PD-1) sensitive and the other α-PD-1 resistant.

Results: Spatial proteomics and gene ontology-based enrichment analysis identified > 145 proteins enriched in CD8high tumour compartments, including negative regulators of mammalian target of rapamycin signalling such as SIRT1. Multiplexed immunohistochemistry confirmed that SIRT1 protein was expressed more in CD8high than in CD8low compartments. Further analysis of bulk and single-cell RNA sequencing data from melanoma tissue samples suggested the expression of SIRT1 by different lymphocyte subpopulations (CD8+ T cells, CD4+ T cells and B cells). Furthermore, we showed in vivo that pharmacological SIRT1 activation increased the immunological effect of α-PD-1 ICI against melanoma cells in mice, which was accompanied by an increase in T-cell infiltration and T-cell-related cytokines, including interferon (IFN)-γ, CCL4, CXCL9, CXCL10 and tumour necrosis factor-α. In silico analysis of large transcriptional data cohorts showed that SIRT1 was positively associated with the proinflammatory T-cell chemokines CXCL9, CXCL10 and IFN-γ, and prolonged overall survival of patients with melanoma.

Conclusions: Our study deciphers the proteomics landscape in human melanoma, providing important information on the tumour microenvironment and identifying SIRT1 as having important prognostic and therapeutic implications.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bjd/ljae433DOI Listing

Publication Analysis

Top Keywords

spatial proteomics
8
t-cell infiltration
8
human melanoma
8
tumour microenvironment
8
clinical response
8
sirt1
8
mouse models
8
pharmacological sirt1
8
sirt1 activation
8
cxcl9 cxcl10
8

Similar Publications

Flexible and robust cell-type annotation for highly multiplexed tissue images.

Cell Syst

September 2025

Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA. Electronic address:

Identifying cell types in highly multiplexed images is essential for understanding tissue spatial organization. Current cell-type annotation methods often rely on extensive reference images and manual adjustments. In this work, we present a tool, the Robust Image-Based Cell Annotator (RIBCA), that enables accurate, automated, unbiased, and fine-grained cell-type annotation for images with a wide range of antibody panels without requiring additional model training or human intervention.

View Article and Find Full Text PDF

The rapid emergence of mineralized structures in diverse animal groups during the late Ediacaran and early Cambrian periods likely resulted from modifications of pre-adapted biomineralization genes inherited from a common ancestor. As the oldest extant phylum with mineralized structures, sponges are key to understanding animal biomineralization. Yet, the biomineralization process in sponges, particularly in forming spicules, is not well understood.

View Article and Find Full Text PDF

There is limited understanding of the impact of anti-IL5 treatment on nasal polyp tissue biology in chronic rhinosinusitis with nasal polyps (CRSwNP). This study examined nasal polyp tissue cellular proteome and transcriptome responses to anti-IL5 treatment in CRSwNP utilising spatial profiling. GeoMx™ Digital Spatial Profiling (DSP) of 80 proteins and 1,833 mRNA targets in the polyp stroma and the whole transcriptome (18,815 mRNA targets) in polyp epithelia was undertaken on sinonasal biopsies collected from 20 individuals with eosinophilic CRSwNP before and after 16 and 24 weeks of mepolizumab treatment.

View Article and Find Full Text PDF

Motivation: Advances in high-throughput technologies have shifted the focus from bulk to single cell or spatial transcriptomic and proteomic analysis of tissues and cell cultures. The resulting increase in gene and/or protein lists leads to the subsequent growth of up- and downregulated pathways lists. This trend creates the need for pathway-network based integration strategies that allow quick exploration of shared and distinct mechanisms across datasets.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a multifactorial, mechano-inflammatory joint disorder characterized by cartilage degradation, synovial inflammation, and subchondral bone remodeling. Despite its high prevalence and significant impact on quality of life, no disease-modifying treatments have been approved. In many other disease areas, advanced omics technologies are impacting the development of advanced therapies.

View Article and Find Full Text PDF