A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Increased resilience and a regime shift reversal through repeat mass coral bleaching. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ecosystems are substantially changing in response to ongoing climate change. For example, coral reefs have declined in coral dominance, with some reefs undergoing regime shifts to non-coral states. However, reef responses may vary through multiple heat stress events, with the rarity of long-term ecological datasets rendering such understanding uncertain. Assessing coral reefs across the inner Seychelles islands using a 28-year dataset, we document faster coral recovery from the 2016 than the 1998 marine heatwave event. Further, compositions of benthic and fish communities were more resistant to change following the more recent heat stress, having stabilized in a persistent altered state, with greater herbivory, following the 1998 climate disturbance. Counter to predictions, a macroalgal-dominated reef that had regime-shifted following the 1998 disturbance is transitioning to a coral-dominated state following the 2016 heat stress. Collectively, these patterns indicate that reef systems may be more resilient to repeat heatwave events than anticipated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686943PMC
http://dx.doi.org/10.1111/ele.14454DOI Listing

Publication Analysis

Top Keywords

heat stress
12
coral reefs
8
coral
5
increased resilience
4
resilience regime
4
regime shift
4
shift reversal
4
reversal repeat
4
repeat mass
4
mass coral
4

Similar Publications