Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios. Compared to static conditions, normal breathing decreased peak particle number concentrations (PNCs) and area under the curve (AUC) by 40% and 70%, respectively, and increased particle decay rates fourfold. However, even with ventilation, intrapulmonary PNC levels exceeded 2 × 10 particles/mL in a 4-puff vaping session. Both respiratory rate and tidal volume modulated e-cig aerosol exposure in a manner inversely proportional to minute ventilation. The modeled lung environment (37 °C, 88% relative humidity) also significantly altered particle size distributions by facilitating aerosol transformations such as hygroscopic growth, which further impacted e-cig aerosol exposure and particle removal. This work highlights the dynamic nature of intrapulmonary exposures and underscores the need to account for lung physiology and environmental factors when assessing inhaled e-cig aerosols.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686258 | PMC |
http://dx.doi.org/10.1038/s41598-024-81066-x | DOI Listing |