A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dexmedetomidine Mitigates Acute Lung Injury by Enhancing M2 Macrophage Polarization and Inhibiting RAGE/Caspase-11-Mediated Pyroptosis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI.

Methods: In present study, cecal ligation puncture (CLP)-established ALI model mice and lipopolysaccharide (LPS)-stimulated RAW264.7 cell line were established to discover the influence of Dex. The evaluation of lung injury using histopathology, TUNEL assay, and analysis of inflammatory factors in bronchoalveolar lavage fluid (BALF) and serum. The receptor for advanced glycation end products (RAGE)/Caspase-11-dependent pyroptosis-related proteins and macrophage polarization markers were analyzed using western blot, immunofluorescence, and flow cytometry. Finally, the mechanism of Dex in macrophages was further verified .

Results: , Dex alleviated lung injury and decreased TUNEL-positive cell expression in CLP group. Dex decreased tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6 and IL-17A levels in BALF and serum, while increasing IL-10 expression. Dex treatment decreased the protein levels of RAGE, caspase-11, IL-1β and Gasdermin-D (GSDMD) in both in cells and in mice. Dex also down-regulated the synthesis of inducible nitric oxide synthase (iNOS) of classical activation phenotype (M1) markers, and up-regulated the synthesis of CD206 and Arg-1 of alternate activation phenotype (M2) markers.

Conclusions: Dex treatment can inhibit inflammation and reduce lung injury caused by CLP. It could be associated with mediating M1 and M2 polarization and suppressing RAGE/Caspase-11-depended pyroptosis.

Download full-text PDF

Source
http://dx.doi.org/10.31083/j.fbl2912409DOI Listing

Publication Analysis

Top Keywords

lung injury
20
acute lung
8
macrophage polarization
8
dex
8
balf serum
8
dex treatment
8
activation phenotype
8
lung
5
injury
5
dexmedetomidine mitigates
4

Similar Publications