Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Single-cell RNA-seq (scRNA-seq) revolutionized our understanding of tissue complexity in health and disease and revealed massive transcriptional dysregulation across placental cell classes in early-onset, but not late-onset preeclampsia (PE). However, the multinucleated syncytium is largely inaccessible to cell dissociation. Nuclei isolation and single-nuclei RNA-seq may be preferable in the placenta; not least considering compatibility with long-term tissue storage. Yet, nuclei contain a subsample of the cells' transcriptional profile. Mature transcripts critical to cellular function and disease may be missed.

Methods: We analyzed placenta from pregnancies using single-cell and single-nuclei RNA-seq. The datasets comprise 45,836 cells and 27,078 nuclei, from 10 to 7 early-onset preeclampsia (EPE) cases and 3 and 2 early idiopathic controls (ECT), respectively. We compared the methods' sensitivities, cell type detection, differential gene expression in PE, and performed histological validations.

Results: Mature syncytiotrophoblast were sampled ∼50x more efficiently after nuclei extraction. Yet, scRNA-seq was more sensitive in detection of genes, molecules and mature transcripts. In snRNA-seq, nuclei of all placental cell classes suffered ambient trophoblast contamination. Transcripts from extravillous trophoblast, stroma, vasculature and immune cells were profiled less comprehensively by single-nuclei RNA-seq (snRNA-seq), restricting cell-type detection. In EPE, we found dysregulation of angiogenic actors FLT1/PGF both in prefused syncytiotrophoblast after cell extraction, and mature syncytiotrophoblast after nuclei isolation. Disease-related stress and inflammation were undetected from nuclei.

Discussion: scRNA-seq has important advantages over snRNA-seq for comprehensive transcriptomics studies of the placenta, especially to understand cell-type resolved dysregulation in pathologies. Yet, to address the dilemma of an underrepresented syncytium, studies benefit from complementary nuclei extraction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.placenta.2024.12.011DOI Listing

Publication Analysis

Top Keywords

single-nuclei rna-seq
12
placental cell
8
cell classes
8
nuclei isolation
8
mature transcripts
8
mature syncytiotrophoblast
8
nuclei extraction
8
nuclei
7
cell
5
single-nuclei
4

Similar Publications

The study of plant biology has traditionally focused on investigations conducted at the tissue, organ, or whole plant level. However, single-cell transcriptomics has recently emerged as an important tool for plant biology, enabling researchers to uncover the expression profiles of individual cell types within a tissue. The application of this tool has revealed new insights into cell-to-cell gene expression heterogeneity and has opened new avenues for research in plant biology.

View Article and Find Full Text PDF

Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.

View Article and Find Full Text PDF

Scnanoseq: an nf-core pipeline for oxford nanopore single-cell RNA-sequencing.

Bioinformatics

September 2025

Institutional Research Core Program-Biological Data Science Core, University of Alabama at Birmingham, Birmingham, AL United States.

Motivation: Recent advancements in long-read single-cell RNA sequencing (scRNA-seq) have facilitated the quantification of full-length transcripts and isoforms at the single-cell level. Historically, long-read data would need to be complemented with short-read single-cell data in order to overcome the higher sequencing errors to correctly identify cellular barcodes and unique molecular identifiers. Improvements in Oxford Nanopore sequencing, and development of novel computational methods have removed this requirement.

View Article and Find Full Text PDF

Adrenoleukodystrophy (ALD) is a rare neurometabolic disease caused by mutations in the gene, which encodes for the peroxisomal very long chain fatty acid (VLCFA) transporter. It is a debilitating disorder, which has a spectrum of clinical presentations. Since the accumulation of VLCFAs are a common feature of all ALD pathologies, we developed a substrate reduction therapy for ALD in the form of an inhibitor of Elovl1, the lipid elongase responsible for the generation of VLCFAs.

View Article and Find Full Text PDF

Genetic risk for Alzheimer's Disease (AD) varies across populations. We hypothesized that three-dimensional (3D) genome architecture variations could offer novel epigenetic understanding of ancestry-specific genetic risk. Herein, we performed Hi-C analyses of frontal cortex from ε4/ε4 individuals with African (AF) or European (EU) ancestry who also had single nuclei ATAC-seq and RNA-seq data available.

View Article and Find Full Text PDF