A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Hand gestures classification of sEMG signals based on BiLSTM-metaheuristic optimization and hybrid U-Net-MobileNetV2 encoder architecture. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Surface electromyography (sEMG) data has been extensively utilized in deep learning algorithms for hand movement classification. This paper aims to introduce a novel method for hand gesture classification using sEMG data, addressing accuracy challenges seen in previous studies. We propose a U-Net architecture incorporating a MobileNetV2 encoder, enhanced by a novel Bidirectional Long Short-Term Memory (BiLSTM) and metaheuristic optimization for spatial feature extraction in hand gesture and motion recognition. Bayesian optimization is employed as the metaheuristic approach to optimize the BiLSTM model's architecture. To address the non-stationarity of sEMG signals, we employ a windowing strategy for signal augmentation within deep learning architectures. The MobileNetV2 encoder and U-Net architecture extract relevant features from sEMG spectrogram images. Edge computing integration is leveraged to further enhance innovation by enabling real-time processing and decision-making closer to the data source. Six standard databases were utilized, achieving an average accuracy of 90.23% with our proposed model, showcasing a 3-4% average accuracy improvement and a 10% variance reduction. Notably, Mendeley Data, BioPatRec DB3, and BioPatRec DB1 surpassed advanced models in their respective domains with classification accuracies of 88.71%, 90.2%, and 88.6%, respectively. Experimental results underscore the significant enhancement in generalizability and gesture recognition robustness. This approach offers a fresh perspective on prosthetic management and human-machine interaction, emphasizing its efficacy in improving accuracy and reducing variance for enhanced prosthetic control and interaction with machines through edge computing integration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682144PMC
http://dx.doi.org/10.1038/s41598-024-82676-1DOI Listing

Publication Analysis

Top Keywords

classification semg
8
semg signals
8
semg data
8
deep learning
8
hand gesture
8
u-net architecture
8
mobilenetv2 encoder
8
edge computing
8
computing integration
8
average accuracy
8

Similar Publications