A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine-Learning Electron Dynamics with Moment Propagation Theory: Application to Optical Absorption Spectrum Computation Using Real-Time TDDFT. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present an application of our new theoretical formulation of quantum dynamics, moment propagation theory (MPT) (Boyer et al., J. Chem. Phys. 160, 064113 (2024)), for employing machine-learning techniques to simulate the quantum dynamics of electrons. In particular, we use real-time time-dependent density functional theory (RT-TDDFT) simulation in the gauge of the maximally localized Wannier functions (MLWFs) for training the MPT equation of motion. Spatially localized time-dependent MLWFs provide a concise representation that is particularly convenient for the MPT expressed in terms of increasing orders of moments. The equation of motion for these moments can be integrated in time, while the analytical expressions are quite involved. In this work, machine-learning techniques were used to train the second-order time derivatives of the moments using first-principles data from the RT-TDDFT simulation, and this MPT enabled us to perform electron dynamics efficiently. The application to computing optical absorption spectrum for various systems was demonstrated as a proof-of-principles example of this approach. In addition to isolated molecules (water, benzene, and ethene), condensed matter systems (liquid water and crystalline silicon) were studied, and we also explored how the principle of the nearsightedness of electrons can be employed in this context.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c00907DOI Listing

Publication Analysis

Top Keywords

electron dynamics
8
dynamics moment
8
moment propagation
8
propagation theory
8
optical absorption
8
absorption spectrum
8
quantum dynamics
8
machine-learning techniques
8
rt-tddft simulation
8
equation motion
8

Similar Publications