98%
921
2 minutes
20
Cells of the methylotrophic yeast Ogataea parapolymorpha have two genes encoding low-affinity phosphate transporters: PHO87, encoding the plasma membrane transporter, and PHO91, encoding a protein, which is homologous to the Saccharomyces cerevisiae vacuolar membrane transporter. Earlier, we reported that inactivation of PHO91 in O. parapolymorpha interferes with methanol utilization due to the lack of activity of methanol oxidase encoded by the MOX gene. In this work, we showed that this defect was completely suppressed by inactivating the PHO87 gene or introducing additional copies of the MOX gene into the cell. The PHO91 gene knockout decreased the level of long-chained polyphosphates only in methanol-grown cells, but not in glucose-grown cells. This effect remained even in the strain with extra copies of MOX, which rescues the ability of the mutant to grow on methanol. In contrast, the PHO87 gene knockout changed the levels of short-chained and long-chained polyphosphates in both methanol- and glucose-grown cells. Inactivation of PHO91 did not change vanadate resistance, while inactivation of PHO87 increased this resistance. Our data suggest that in O. parapolymorpha, Pho87 and Pho91 transporters have different roles in inorganic polyphosphate metabolism and adaptation to methanol consumption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12223-024-01236-2 | DOI Listing |
Folia Microbiol (Praha)
December 2024
Federal Research Center "Pushchino Scientific Center for Biological Research", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russian Federation.
Cells of the methylotrophic yeast Ogataea parapolymorpha have two genes encoding low-affinity phosphate transporters: PHO87, encoding the plasma membrane transporter, and PHO91, encoding a protein, which is homologous to the Saccharomyces cerevisiae vacuolar membrane transporter. Earlier, we reported that inactivation of PHO91 in O. parapolymorpha interferes with methanol utilization due to the lack of activity of methanol oxidase encoded by the MOX gene.
View Article and Find Full Text PDFPLoS Genet
August 2024
Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, United States of America.
Phosphorus is essential in all cells' structural, metabolic and regulatory functions. For fungal cells that import inorganic phosphate (Pi) up a steep concentration gradient, surface Pi transporters are critical capacitators of growth. Fungi must deploy Pi transporters that enable optimal Pi uptake in pH and Pi concentration ranges prevalent in their environments.
View Article and Find Full Text PDFArch Microbiol
January 2023
Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, Russia.
The cells of Saccharomyces cerevisiae are capable for phosphate surplus: the increased uptake of phosphate (Pi) and accumulation of inorganic polyphosphate (polyP) occur when the cells after Pi limitation were cultivated in a medium supplemented with Pi. We demonstrated that single knockout mutations in the PHO84, PHO87, and PHO89 genes encoding plasma membrane phosphate transporters suppressed the Pi uptake and polyP accumulation under phosphate surplus at nitrogen starvation. The knockout strains in the PHM6 and PHM7 genes encoding unannotated PHO-proteins showed decreased polyP accumulation under Pi surplus both at nitrogen starvation and in complete YPD medium.
View Article and Find Full Text PDFChem Res Toxicol
November 2019
From the Department of Molecular Biophysics and Biochemistry , Yale University, New Haven , Connecticut 06520.
Organisms are exposed to fluoride in the air, water, and soil. Yeast and other microbes utilize fluoride channels as a method to prevent intracellular fluoride accumulation and mediate fluoride toxicity. Consequently, deletion of fluoride exporter genes (FEX) in resulted in over 1000-fold increased fluoride sensitivity.
View Article and Find Full Text PDFBioengineered
December 2019
a School of Chemistry and Chemical Engineering/The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi , China.
Selenium-enriched yeast can transform toxic inorganic selenium into absorbable organic selenium, which is of great significance for human health and pharmaceutical industry. A yeast X-20 we obtained before has good selenium-enriched ability, but its selenium content is still low for industrial application. In this study, strategies of process optimization and transport regulation of selenium were thus employed to further improve the cell growth and selenium enrichment.
View Article and Find Full Text PDF