98%
921
2 minutes
20
Alcohol consumption has been consistently linked to an increased risk of several cancers, including breast and ovarian cancer. Despite substantial evidence supporting this association, the precise mechanisms underlying alcohol's contribution to cancer pathogenesis remain incompletely understood. This narrative review focuses on the key current literature on the biological pathways through which alcohol may influence the development of breast and ovarian cancer. Key mechanisms discussed include the modulation of estrogen levels, the generation of reactive oxygen species, the production of acetaldehyde, the promotion of chronic inflammation, and the induction of epigenetic changes. Alcohol's impact on estrogenic signaling, particularly in the regulation of estrogen and progesterone, is explored in the context of hormone-dependent cancers. Additionally, the role of alcohol-induced DNA damage, mutagenesis, and immune system modulation in tumor initiation and progression is examined. Overall, this review emphasizes the importance of alcohol as a modifiable risk factor for breast and ovarian cancer and highlights the need for further research to clarify its role in cancer biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674816 | PMC |
http://dx.doi.org/10.3390/cimb46120866 | DOI Listing |
Int J Surg
September 2025
State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
Introduction: Recent advancements in surgical techniques and perioperative care have improved cancer survival rates, yet postoperative comorbidity and mortality remain a critical concern. Despite progress in cancer control, systematic analyses of long-term mortality trends and competing risks in surgery-intervened cancer populations are lacking. This study aimed to quantify temporal patterns of postoperative mortality causes across 21 solid cancers and identify dominant non-cancer risk factors to inform survivorship care strategies.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, 90033, California, USA.
Am J Hum Genet
September 2025
Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Fulham Road, London, UK. Electronic address:
Multiplex assays of variant effect (MAVEs) provide promising new sources of functional evidence, potentially empowering improved classification of germline genomic variants, particularly rare missense variants, which are commonly assigned as variants of uncertain significance (VUSs). However, paradoxically, quantification of clinically applicable evidence strengths for MAVEs requires construction of "truthsets" comprising missense variants already robustly classified as pathogenic and benign. In this study, we demonstrate how benign truthset size is the primary driver of applicable functional evidence toward pathogenicity (PS3).
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.
View Article and Find Full Text PDFTher Adv Med Oncol
September 2025
Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, 15503 Ventura Blvd, Suite 150, Los Angeles, CA 90095, USA.
The relationship between pregnancy and breast cancer is complicated. On one hand, pregnancy can influence breast cancer risk and tumor biology, and on the other, a breast cancer diagnosis and its subsequent management can significantly affect fertility, family planning, and future pregnancies. This interaction presents challenges unique to young women with breast cancer (YWBC).
View Article and Find Full Text PDF