98%
921
2 minutes
20
The screening of novel antiviral agents from marine microorganisms is an important strategy for new drug development. Our previous study found that polyether K-41A and its analog K-41Am, derived from a marine Streptomyces strain, exhibit anti-HIV activity by suppressing the activities of HIV-1 reverse transcriptase (RT) and its integrase (IN). Among the K-41A derivatives, two disaccharide-bearing polyethers-K-41B and K-41Bm-were found to have potent anti-HIV-1 activity in vitro. This study aimed to clarify whether K-41B and K-41Bm have inhibitory effects on different HIV-1 strains or whether these two derivatives have mechanisms of action different from that of their precursor, K-41A. An anti-HIV-1 assay indicated that K-41B and K-41Bm have potent anti-HIV-1 activity, with low 50% inhibitory concentrations (ICs) (0.076 and 0.208 μM, respectively) and high selective indexes (SIs) (58.829 and 31.938, respectively) in the peripheral blood mononuclear cell (PBMC)-HIV-1 system. The time-of-addition (TOA) assay indicated that K-41B and K-41Bm may exert antiviral effects by activating multiple stages of HIV-1 replication. A cell protection assay indicated that the pretreatment of cells with K-41B or K-41Bm has almost no inhibitory effect on HIV-1 infection. A virus inactivation assay indicated that pretreatment of the virus with K-41B or K-41Bm inhibits HIV-1 infection by 60%. A cell-cell fusion assay showed that K-41B and K-41Bm blocked the cell fusion mediated by viral envelope proteins. The HIV-1 key enzyme experiment also indicated that both compounds have certain inhibitory effects on HIV-1 IN. Furthermore, molecular docking showed that K-41B and K-41Bm interact with several viral and host proteins, including HIV-1 IN, an envelope protein (gp120), a transmembrane protein (gp41), and cell surface receptors (CD4, CCR5, and CXCR4). Overall, in addition to having a similar anti-HIV-1 mechanism of inhibiting HIV-1 IN like the precursor polyether K-41A, the disaccharide-bearing polyether derivatives K-41B and K-41Bm may also inhibit viral entry. This suggests that they display anti-HIV-1 mechanisms that are different from those of their precursor polyethers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11674546 | PMC |
http://dx.doi.org/10.3390/cimb46120805 | DOI Listing |
Curr Issues Mol Biol
November 2024
Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China.
The screening of novel antiviral agents from marine microorganisms is an important strategy for new drug development. Our previous study found that polyether K-41A and its analog K-41Am, derived from a marine Streptomyces strain, exhibit anti-HIV activity by suppressing the activities of HIV-1 reverse transcriptase (RT) and its integrase (IN). Among the K-41A derivatives, two disaccharide-bearing polyethers-K-41B and K-41Bm-were found to have potent anti-HIV-1 activity in vitro.
View Article and Find Full Text PDFOrg Lett
June 2020
CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.
The biosynthetic gene cluster (BGC) for polyether antibiotic K-41A was identified from marine-derived sp. SCSIO 01680 and subjected to combinatorial biosynthetic study. Bioinformatics analyses, gene disruption, and metabolomics analyses afforded eight new derivatives and one known polyether, showcasing five region-specific methyltransferases Pak13, Pak15, Pak20, Pak31, and Pak38 and their respective modification loci.
View Article and Find Full Text PDF