Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanostructured Pt-based catalysts have attracted considerable attention for fuel-cell applications. This study introduces a novel one-pot and low-temperature polyol approach for synthesizing support-free, connected nanoparticles with non-Pt metal cores and Pt shells. Unlike conventional heat treatment methods, the developed support-free and Fe-free connected Pd@Pt (Pd@Pt) nanoparticle catalyst possesses a stable nanonetwork structure with a high surface area. This approach can precisely control the atomic-level structure of the Pt shell on the Pd core at a low deposition temperature. The optimized Pd@Pt catalyst with a Pt/Pd atomic ratio of 0.8 and a Pt shell thickness of 1.1 nm exhibits a threefold improvement in oxygen reduction reaction (ORR) mass activity compared to that of commercial carbon-supported Pt nanoparticle catalyst (Pt/C). Durability evaluation demonstrated 100% retention of specific activity after 10,000 load cycles, owing to the stable nanonetwork and uniform coverage of the Pt shell. In addition, the support-free, connected core-shell nanoparticle catalyst overcomes the carbon corrosion issues commonly associated with conventional carbon-supported catalysts while simultaneously improving both ORR activity and load cycle durability. These findings highlight the potential of this innovative approach to develop support-free catalysts for polymer electrolyte fuel cells and other energy devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831485PMC
http://dx.doi.org/10.1002/advs.202408614DOI Listing

Publication Analysis

Top Keywords

support-free connected
12
nanoparticle catalyst
12
connected core-shell
8
core-shell nanoparticle
8
oxygen reduction
8
stable nanonetwork
8
support-free
5
nanoparticle
4
catalysts
4
nanoparticle catalysts
4

Similar Publications

Nanostructured Pt-based catalysts have attracted considerable attention for fuel-cell applications. This study introduces a novel one-pot and low-temperature polyol approach for synthesizing support-free, connected nanoparticles with non-Pt metal cores and Pt shells. Unlike conventional heat treatment methods, the developed support-free and Fe-free connected Pd@Pt (Pd@Pt) nanoparticle catalyst possesses a stable nanonetwork structure with a high surface area.

View Article and Find Full Text PDF

In conventional laser-based powder bed fusion of polymers (PBF-LB/P), aging of the powder due to preheating of the powder bed is a significant issue. This paper proposes a method for low-temperature PBF-LB/P using a semi-sintering process that minimizes powder aging caused by preheating. By partially semi-sintering the low-temperature powder bed, it was possible to execute the PBF-LB/P while avoiding the aging of most of the powder.

View Article and Find Full Text PDF

Background: Patients hospitalised for COVID-19 are at risk for multiorgan failure and death. Sodium-glucose co-transporter-2 (SGLT2) inhibitors provide cardiovascular and kidney protection in patients with cardiometabolic conditions and could provide organ protection during COVID-19. We aimed to investigate whether SGLT2 inhibitors can reduce the need for organ support in patients hospitalised for COVID-19.

View Article and Find Full Text PDF

Background: Clinical trials suggest that therapeutic-dose heparin may prevent critical illness and vascular complications due to COVID-19, but knowledge gaps exist regarding the efficacy of therapeutic heparin including its comparative effect relative to intermediate-dose anticoagulation.

Objectives: The authors performed 2 complementary secondary analyses of a completed randomized clinical trial: 1) a prespecified per-protocol analysis; and 2) an exploratory dose-based analysis to compare the effect of therapeutic-dose heparin with low- and intermediate-dose heparin.

Methods: Patients who received initial anticoagulation dosed consistently with randomization were included.

View Article and Find Full Text PDF

Perinatal stroke describes a group of focal, vascular brain injuries that occur early in development, often resulting in lifelong disability. Two types of perinatal stroke predominate, arterial ischemic stroke (AIS) and periventricular venous infarction (PVI). Though perinatal stroke is typically considered a motor disorder, other comorbidities commonly exist including attention-deficit hyperactivity disorder (ADHD) and deficits in executive function.

View Article and Find Full Text PDF