Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Influenza A virus (IAV) poses a serious global threat to public health. There is an urgent need to develop new anti-IAV agents due to the limitations of the current antiviral drugs in clinical practice. Herein, based on compound I-13e, we designed and synthesized 23 substituted quinoline derivatives containing piperazine moieties and evaluated their in vitro anti-IAV activity. The results showed that compounds 4a, 4c, 6c, 6f, 6g, 6i and 9a-9d (ICs: 0.88-4.92 μM) were more active against IAV than Ribavirin. In particular, compound 9b exhibited broad-spectrum antiviral activity (IC: 0.88-6.33 μM) and acceptable cytotoxicity. The preliminary studies on its mechanism of action indicated an inhibition of viral RNA transcription and replication. These results suggested its potential as a promising anti-IAV candidate for further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2024.130081 | DOI Listing |