98%
921
2 minutes
20
Alzheimer's disease (AD), the most common neurodegenerative disorder world-wide, presents sex-specific differences in its manifestation and progression, necessitating personalized diagnostic approaches. Current procedures are often costly and invasive, lacking consideration of sex-based differences. This study introduces an explainable machine learning (ML) system to predict and differentiate the progression of AD based on sex, using non-invasive, easily collectible predictors such as neuropsychological test scores and sociodemographic data, enabling its application in every day clinical settings. The ML model uses SHapley Additive explanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) to provide clear insights into its decision-making, making complex outcomes easier to interpret. The system includes a user-friendly graphical interface designed in collaboration with clinicians, supporting its integration into medical practice. The study extends the cohort to include healthy and Mild Cognitive Impairment subjects, aiming to support early diagnosis in AD pre-clinical stages. The ML system was trained on a large dataset of 2407 subjects from the ADNI open dataset, enhancing its robustness and applicability. By focusing on sex-specific features and utilizing longitudinal data, the system aims to improve prediction accuracy and early detection of AD, ultimately advancing personalized diagnostic and therapeutic approaches. Key findings highlight the significance of the Mini-Mental State Examination, Rey Auditory Verbal Learning Test, Logical Memory - Delayed Recall, and educational attainment in AD diagnosis and progression, with sex-based disparities. Despite performance metrics based on precision, recall, and weighted F1-score demonstrating model efficacy, future research should address the limitations of relying on a single dataset.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jns.2024.123361 | DOI Listing |
PLoS One
September 2025
Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.
Student dropout is a significant challenge in Bangladesh, with serious impacts on both educational and socio-economic outcomes. This study investigates the factors influencing school dropout among students aged 6-24 years, employing data from the 2019 Multiple Indicator Cluster Survey (MICS). The research integrates statistical analysis with machine learning (ML) techniques and explainable AI (XAI) to identify key predictors and enhance model interpretability.
View Article and Find Full Text PDFInt J Surg
September 2025
Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China.
Acta Psychiatr Scand
September 2025
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Introduction: Machine learning studies sometimes include a high number of predictors relative to the number of training cases. This increases the risk of overfitting and poor generalizability. A recent study hypothesized that between-trial heterogeneity precluded generalizable outcome prediction in schizophrenia from being achieved.
View Article and Find Full Text PDFCancer Med
September 2025
Department of Computer Engineering, Social and Biological Network Analysis Laboratory, University of Kurdistan, Sanandaj, Iran.
Background: Ovarian cancer (OC) remains the most lethal gynecological malignancy, largely due to its late-stage diagnosis and nonspecific early symptoms. Advances in biomarker identification and machine learning offer promising avenues for improving early detection and prognosis. This review evaluates the role of biomarker-driven ML models in enhancing the early detection, risk stratification, and treatment planning of OC.
View Article and Find Full Text PDFFront Physiol
August 2025
Department of Ultrasound, Deyang People's Hospital, Deyang, Sichuan, China.
Background: Antiphospholipid syndrome (APS) is a major immune-related disorder that leads to adverse pregnancy outcomes (APO), including recurrent miscarriage, placental abruption, preterm birth, and fetal growth restriction. Antiphospholipid antibodies (aPLs), particularly anticardiolipin antibodies (aCL), anti-β2-glycoprotein I antibodies (aβ2GP1), and lupus anticoagulant (LA), are considered key biomarkers for APS and are closely associated with adverse pregnancy outcomes. This is a prospective observational cohort study to use machine learning model to predict adverse pregnancy outcomes in APS patients using early pregnancy aPL levels and clinical features.
View Article and Find Full Text PDF