Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Eger Rift subsurface is characterized by frequent seismic activity and consistently high CO concentrations, making it a unique deep biosphere ecosystem and a suitable site to study the interactions between volcanism, tectonics, and microbiological activity. Pulses of geogenic H during earthquakes may provide substrates for methanogenic and chemolithoautotrophic processes, but very little is currently known about the role of subsurface microorganisms and their cellular processes in this type of environment. To assess the impact of geologic activity on microbial life, we analyzed the geological, geochemical, and microbiological composition of rock and sediment samples from a 238 m deep drill core, running across six lithostratigraphic zones. We evaluated the diversity and distribution of bacterial and archaeal communities. Our investigation revealed a distinct low-biomass community, with a surprisingly diverse archaeal population, providing strong support that methanogenic archaea reside in the Eger subsurface. Geochemical analysis demonstrated that ion concentrations (mostly sodium and sulfate) were highest in sediments from 50 to 100 m depth and in weathered rock below 200 m, indicating an elevated potential for ion solution in these areas. Microbial communities were dominated by common soil and water bacteria. Together with the occurrence of freshwater cyanobacteria at specific depths, these observations emphasize the heterogenous character of the sediments and are indicators for vertical groundwater movement across the Eger Rift subsurface. Our investigations also found evidence for anaerobic, autotrophic, and acidophilic communities in Eger Rift sediments, as sulfur-cycling taxa like Thiohalophilus and Desulfosporosinus were specifically enriched at depths below 100 m. The detection of methanogenic, halophilic, and ammonia-oxidizing archaeal populations demonstrate that the unique features of the Eger Rift subsurface environment provide the foundation for diverse types of microbial life, including the microbial utilization of geologically derived CO and, when available, H, as a primary energy source.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669242PMC
http://dx.doi.org/10.1186/s40793-024-00651-9DOI Listing

Publication Analysis

Top Keywords

eger rift
20
rift subsurface
12
microbial life
8
eger
6
microbial
5
rift
5
subsurface
5
microbial diversity
4
diversity biogeochemical
4
biogeochemical interactions
4

Similar Publications

The Eger Rift subsurface is characterized by frequent seismic activity and consistently high CO concentrations, making it a unique deep biosphere ecosystem and a suitable site to study the interactions between volcanism, tectonics, and microbiological activity. Pulses of geogenic H during earthquakes may provide substrates for methanogenic and chemolithoautotrophic processes, but very little is currently known about the role of subsurface microorganisms and their cellular processes in this type of environment. To assess the impact of geologic activity on microbial life, we analyzed the geological, geochemical, and microbiological composition of rock and sediment samples from a 238 m deep drill core, running across six lithostratigraphic zones.

View Article and Find Full Text PDF

Introduction: Long-term stability of underground CO storage is partially affected by microbial activity but our knowledge of these effects is limited, mainly due to a lack of sites. A consistently high flux of mantle-derived CO makes the Eger Rift in the Czech Republic a natural analogue to underground CO storage. The Eger Rift is a seismically active region and H is produced abiotically during earthquakes, providing energy to indigenous microbial communities.

View Article and Find Full Text PDF

A metagenome-assembled genome (MAG), named sp. strain ERenArc_MAG2, was obtained from a 3-month-old H/CO atmosphere enrichment culture, originally inoculated with 60-m deep drill core sediment collected from the tectonic Eger Rift terrestrial subsurface. Annotation of the recovered draft genome revealed putative archaeal methanogenesis genes in the deep biosphere.

View Article and Find Full Text PDF

A circular, single-contig sp. metagenome-assembled genome (MAG) was recovered from high-CO enrichments inoculated with drill core material from the tectonic Eger Rift terrestrial subsurface. Annotation of the recovered MAG highlighted putative methanogenesis genes, providing valuable information on archaeal activity in the deep biosphere.

View Article and Find Full Text PDF

The Hartoušov mofette system is a natural CO degassing site in the central Cheb Basin (Eger Rift, Central Europe). In early 2016 a 108 m deep core was obtained from this system to investigate the impact of ascending mantle-derived CO on indigenous deep microbial communities and their surrounding life habitat. During drilling, a CO blow out occurred at a depth of 78.

View Article and Find Full Text PDF