A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

[Legacy Effects of Long-term Straw Returning on Straw Degradation and Microbial Communities of the Aftercrop]. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Straw incorporation can improve soil fertility and soil structure. While numerous studies have explored the immediate impacts of straw return on soil properties and crop production, the legacy effects of long-term straw return remain less understood. In this study, the straw returning soil of a continuous 15 years (SS) and non-straw returning soil (NS) were collected from Dahe Experimental Station of Hebei Academy of Agriculture and Forestry Sciences in China. The simulation experiments of subsequent straw return were carried out in pots by adding straw to the two types of soil (SS and NS), in which the degradation rate of straw was determined using the sandbag method, the number of culturable microorganisms was counted through a dilution coating plate, and microbial communities were characterized using high-throughput sequencing. The findings revealed that compared with that in NS, SS significantly increased the degradation rate of 15 d and 30 d straw by 14.16% and 26.57%; the number of soil culturable fungi in 0-60 days by 43.10%-185.92%; and the number of cellulose-degrading bacteria by 55.12%-92.04% at 0 d, 42 d, and 56 d. Additionally, after straw returning for seven days, the bacterial ACE index, fungal ACE index, and Chao1 index in SS were lower than those in NS, indicating that the microbial community richness in SS was significantly reduced. At the phylum level of bacteria, the relative abundances of Acidobacteria, Rokubacteria, and Planctomycetes in SS increased observably, with an increase of 25.92%-45.17%. The relative abundances of the phyla of fungi such as Olpidiomycota, Zoopagomycota, and Glomeromycota increased markedly, with an increase of 12.09%-176.00%. At the genus level of bacteria, the relative abundances of uncultured_bacterium_c_ and uncultured_bacterium_o_ in SS increased significantly, with an increase of 28.91%-31.26%, and at the genus level of fungi, the relative abundances of , and were significantly increased by 2.98%-8.79%. Network analysis showed the SS bacterial network had a higher interaction degree and network connection, and the fungal network structure was more complex and stable than that of the NS. RDA results showed that soil microbial community composition was significantly correlated with straw degradation rate. SS showed obvious legacy effects on straw degradation, the number of soil culturable microorganisms, and population structure in a certain period, and the microbial flora of SS was more conducive to the degradation of the straws.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202312205DOI Listing

Publication Analysis

Top Keywords

relative abundances
16
straw
13
straw returning
12
straw degradation
12
straw return
12
degradation rate
12
soil
9
effects long-term
8
long-term straw
8
microbial communities
8

Similar Publications