A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Polyol-Induced 100-Fold Enhancement of Bacterial Ice Nucleation Efficiency. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ice-nucleating proteins (INPs) from bacteria like are among the most effective ice nucleators known. However, large INP aggregates with maximum ice nucleation activity (at approximately -2 °C) typically account for less than 1% of the overall ice nucleation activity in bacterial samples. This study demonstrates that polyols significantly enhance the assembly of INPs into large aggregates, dramatically improving bacterial ice nucleation efficiency. Simple compounds like polyvinyl alcohol increased the abundance of large INP aggregates by a factor of 100. This remarkable boost in ice nucleation efficiency is attributed to the stabilization of INP aggregates through membrane-polyol interactions that stabilize INP interactions and reduce structural fluctuations. The ability to regulate the abundance of large INP aggregates in bacterial ice nucleators enables fine-tuning ice nucleation processes at much lower concentrations for specific biomedical and technological purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664577PMC
http://dx.doi.org/10.1021/acs.jpcc.4c07422DOI Listing

Publication Analysis

Top Keywords

ice nucleation
24
inp aggregates
16
bacterial ice
12
nucleation efficiency
12
large inp
12
ice
8
ice nucleators
8
nucleation activity
8
abundance large
8
nucleation
6

Similar Publications