98%
921
2 minutes
20
Motivation: Fluorophore-assisted seed amplification assays (F-SAAs), such as real-time quaking-induced conversion (RT-QuIC) and fluorophore-assisted protein misfolding cyclic amplification (F-PMCA), have become indispensable tools for studying protein misfolding in neurodegenerative diseases. However, analyzing data generated by these techniques often requires complex and time-consuming manual processes. In addition, the lack of standardization in F-SAA data analysis presents a significant challenge to the interpretation and reproducibility of F-SAA results across different laboratories and studies. There is a need for automated, standardized analysis tools that can efficiently process F-SAA data while ensuring consistency and reliability across different research settings.
Results: Here, we present QuICSeedR (pronounced as "quick seeder"), an R package that addresses these challenges by providing a comprehensive toolkit for the automated processing, analysis, and visualization of F-SAA data. Importantly, QuICSeedR also establishes the foundation for building an F-SAA data management and analysis framework, enabling more consistent and comparable results across different research groups.
Availability And Implementation: QuICSeedR is freely available at: https://CRAN.R-project.org/package=QuICSeedR. Data and code used in this manuscript are provided in Supplementary Materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742141 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btae752 | DOI Listing |
Bioinformatics
December 2024
Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, United States.
Motivation: Fluorophore-assisted seed amplification assays (F-SAAs), such as real-time quaking-induced conversion (RT-QuIC) and fluorophore-assisted protein misfolding cyclic amplification (F-PMCA), have become indispensable tools for studying protein misfolding in neurodegenerative diseases. However, analyzing data generated by these techniques often requires complex and time-consuming manual processes. In addition, the lack of standardization in F-SAA data analysis presents a significant challenge to the interpretation and reproducibility of F-SAA results across different laboratories and studies.
View Article and Find Full Text PDFPLoS One
September 2019
Division of Psychology, School of Medicine, University of Tasmania, Hobart, Australia.
Salivary alpha-amylase (sAA) activity has been widely used in psychological and medical research as a surrogate marker of sympathetic nervous system activation, though its utility remains controversial. The aim of this work was to compare alternative intensive longitudinal models of sAA data: (a) a traditional model, where sAA is a function of hour (hr) and hr squared (sAAj,t = f(hr, hr2), and (b) an autoregressive model, where values of sAA are a function of previous values (sAAj,t = f(sAA j,t-1, sAA j,t-2, …, sAA j,t-p). Nineteen normal subjects (9 males and 10 females) participated in the experiments and measurements were performed every hr between 9:00 and 21:00 hr.
View Article and Find Full Text PDFAmyloid
September 2010
Institute of Veterinary Pathology, University of Zürich, Switzerland.
In hunting falcons, a fatal syndrome of wasting, weight loss, green mutes and, finally, sudden death of emaciated birds has been observed in the United Arab Emirates (UAE). Histological examination using Congo red has revealed amyloid in most organs, in particular in the liver, spleen, kidney, and adrenal glands. Moreover, a retrospective study revealed amyloidosis in 100 cases among a total of 623 necropsied falcons between August 1995 and March 2004 in Dubai/UAE (16%; varying from 8 to 30% in different raptor bird species).
View Article and Find Full Text PDFJ Biol Chem
February 2004
Nephrology Research Group, Department of Medicine, Faculty of Medicine, Laval University, Québec G1R 2J6, Canada.
The 2nd transmembrane domain (tm) of the secretory Na(+)-K(+)-Cl(-) cotransporter (NKCC1) and of the kidney-specific isoform (NKCC2) has been shown to play an important role in cation transport. For NKCC2, by way of illustration, alternative splicing of exon 4, a 96-bp sequence from which tm2 is derived, leads to the formation of the NKCC2A and F variants that both exhibit unique affinities for cations. Of interest, the NKCC2 variants also exhibit substantial differences in Cl- affinity as well as in the residue composition of the first intracellular connecting segment (cs1a), which immediately follows tm2 and which too is derived from exon 4.
View Article and Find Full Text PDF