Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Obstructive Sleep Apnea (OSA) is a common sleep-related breathing disorder characterized by airway obstruction during sleep. Diagnosing pediatric OSA is challenging, particularly in underrepresented populations, leading to disparities in treatment and long-term negative health outcomes. Our study aimed to identify alternative diagnostic tools by investigating genome-wide epigenetic changes and associated transcriptomic alterations in Black female, pediatric patients with OSA. Whole-genome bisulfite sequencing and RNA sequencing were performed on saliva samples from healthy controls and children with OSA. Analysis of differential methylation and gene expression patterns revealed dysregulated inflammation and metabolism pathways in children with OSA. Chromosomes 19 and 22 exhibited elevated methylation signatures in this patient population. Integration of methylation and gene expression data identified specific molecular markers, including , The study emphasizes the need to consider both genetic and environmental factors in pediatric OSA, and the identified markers may offer avenues for further research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665405PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e40830DOI Listing

Publication Analysis

Top Keywords

genome-wide epigenetic
8
obstructive sleep
8
sleep apnea
8
black female
8
pediatric osa
8
children osa
8
methylation gene
8
gene expression
8
osa
6
epigenetic profiling
4

Similar Publications

Aims: Psychological resilience refers to an individual's capacity to adapt to adverse events. MicroRNAs (miRNAs) play a crucial role in regulating post-transcriptional processes, while small extracellular vesicles (sEVs) act as transport vehicles. This study aimed to employ genome-wide profiling to identify and validate differences in the expression of resilience-associated sEV-miRNAs between low resilience (LR) and high resilience (HR) in young adults.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder lacking objective biomarkers for early diagnosis. DNA methylation is a promising epigenetic marker, and machine learning offers a data-driven classification approach. However, few studies have examined whole-blood, genome-wide DNA methylation profiles for ASD diagnosis in school-aged children.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) relevant to osteoporosis have identified hundreds of loci; however, understanding how these variants influence the phenotype is complicated because most reside in non-coding DNA sequence that serves as transcriptional enhancers and repressors. To advance knowledge on these regulatory elements in osteoclasts (OCs), we performed Micro-C analysis, which informs on the genome topology of these cells and integrated the results with transcriptome and GWAS data to further define loci linked to BMD. Using blood cells isolated from 4 healthy participants aged 31-61 yr, we cultured OC in vitro and generated a Micro-C chromatin conformation capture dataset.

View Article and Find Full Text PDF

Introduction: The COVID-19 pandemic had significant global public health consequences, affecting over 200 countries and regions by 2020. The development and efficacy of specific vaccines, such as the mRNA-1273 (Spikevax) vaccine developed by Moderna Inc., have substantially reduced the impact of the pandemic and mitigated its consequences.

View Article and Find Full Text PDF

Introduction: Nephropathic cystinosis is a rare genetic disorder characterized by cystine accumulation in lysosomes that causes early renal dysfunction and progressive chronic kidney disease. Although several metabolic pathways, including oxidative stress and inflammation, have been implicated in the progression of renal parenchyma damage, the precise mechanisms driving its progression are not fully understood. Recent studies suggest that epigenetic modifications, particularly DNA methylation (DNAm), play a critical role in the development of chronic kidney disease.

View Article and Find Full Text PDF