98%
921
2 minutes
20
Deep mucosal and organ infections caused by the infestation of Candida albicans in immunocompromised patients represent a significant cause of mortality in hospitalized patients. The rise in fungal resistance is a consequence of the overuse of antibiotics. Therefore, innovative immunostimulants must be developed to combat pathogenic fungal infections. We used urolithin A (UA), an intestinal metabolite rich in the naturally occurring polyphenolic antioxidants ellagic acid (EA) or ellagitannin (ET), as a lead compound for structural modification. Through liquid screening of 17 synthesized compounds, we discovered compound 1e effectively inhibited C. albicans biofilm formation, thereby reducing its virulence. Furthermore, it protects animals from severe infections by enhancing tolerance to infection by intestinal pathogens and reducing oxidative stress. Moreover, our findings indicate that compound 1e exerts its effects through the p38 mitogen-activated protein kinase (MAPK) innate immune pathway, which is evolutionarily conserved. These observations not only enhance our comprehension of immune mechanisms but also provide a crucial foundation for the development of immune activators with the potential to resist pathogenic bacterial infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.202402966 | DOI Listing |
Front Glob Womens Health
August 2025
Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana.
Background: Vulvovaginal Candidiasis (VVC) is a condition commonly caused by . It is the second most common infection of the female genitalia affecting many women worldwide. Studies have identified unhealthy genital care practices to be associated with the infection among women including expectant mothers.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia.
Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.
Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.
Infect Drug Resist
September 2025
Department of Emergency, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China.
Introduction: Severe community-acquired pneumonia (SCAP) in immunocompromised patients is often caused by rare atypical pathogens, which are difficult to detect using conventional microbiological tests (CMTs) and can progress to sepsis in severe cases. Metagenomic next-generation sequencing (mNGS), an emerging pathogen detection technique, enables rapid identification of mixed infections and provides valuable guidance for clinical treatment decisions. SCAP-induced sepsis caused by a six-pathogen co-infection has not been previously reported, but interpretation remains a challenge.
View Article and Find Full Text PDFJ Med Microbiol
September 2025
Department of Microbiology, Meiji Pharmaceutical University, Tokyo, Japan.
Biofilms are a primary form of device-associated infections and typically exhibit high tolerance to antimicrobial agents. In biofilms formed by multiple microbial species, microorganisms may show even greater tolerance, complicating treatment. There is evidence that meropenem (MEPM) tolerance in is increased in dual-species biofilms with , and effective treatments have not been established.
View Article and Find Full Text PDFCancer Pathog Ther
September 2025
Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
Oral cancer pathogenesis is significantly influenced by species, especially , through chronic inflammation and cellular dysregulation. Epidemiological studies highlight a strong correlation between persistent infections and oral carcinogenesis. Experimental evidence has identified key biomolecular mechanisms, including biofilm formation, epithelial invasion, and immune evasion.
View Article and Find Full Text PDF