Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Circadian rhythms in mammals arise from the spatiotemporal synchronization of ~20,000 neuronal clocks in the Suprachiasmatic Nucleus (SCN). While anatomical, molecular, and genetic approaches have revealed diverse cell types and signaling mechanisms, the network wiring that enables SCN cells to communicate and synchronize remains unclear. To overcome the challenges of revealing functional connectivity from fixed tissue, we developed MITE (Mutual Information & Transfer Entropy), an information theory approach that infers directed cell-cell connections with high fidelity. By analyzing 3447 hours of continuously recorded clock gene expression from 9011 cells in 17 mice, we found that the functional connectome of SCN was highly conserved bilaterally and across mice, sparse, and organized into a dorsomedial and a ventrolateral module. While most connections were local, we discovered long-range connections from ventral cells to cells in both the ventral and dorsal SCN. Based on their functional connectivity, SCN cells can be characterized as circadian signal generators, broadcasters, sinks, or bridges. For example, a subset of VIP neurons acts as hubs that generate circadian signals critical to synchronize daily rhythms across the SCN neural network. Simulations of the experimentally inferred SCN networks recapitulated the stereotypical dorsal-to-ventral wave of daily PER2 expression and ability to spontaneously synchronize, revealing that SCN emergent dynamics are sculpted by cell-cell connectivity. We conclude that MITE provides a powerful method to infer functional connectomes, and that the conserved architecture of cell-cell connections mediates circadian synchrony across space and time in the mammalian SCN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661124 | PMC |
http://dx.doi.org/10.1101/2024.12.06.627294 | DOI Listing |