98%
921
2 minutes
20
Image quality in single molecule localization microscopy (SMLM) depends largely on the accuracy and precision of the localizations. While under ideal imaging conditions the theoretically obtainable precision and accuracy are achieved, in practice this changes if (field dependent) aberrations are present. Currently there is no simple way to measure and incorporate these aberrations into the Point Spread Function (PSF) fitting, therefore the aberrations are often taken constant or neglected all together. Here we introduce a model-based approach to estimate the field-dependent aberration directly from single molecule data without a calibration step. This is made possible by using nodal aberration theory to incorporate the field-dependency of aberrations into our fully vectorial PSF model. This results in a limited set of aberration fit parameters that can be extracted from the raw frames without a bead calibration measurement, also in retrospect. The software implementation is computationally efficient, enabling fitting of a full 2D or 3D dataset within a few minutes. We demonstrate our method on 2D and 3D localization data of microtubuli and nuclear pore complexes over fields of view (FOV) of up to 180 μm and compare it with spline-based fitting and a deep learning based approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661230 | PMC |
http://dx.doi.org/10.1101/2024.12.11.627909 | DOI Listing |
Phys Chem Chem Phys
September 2025
Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
Hybrid systems (HSs) of quantum dots (QDs) and molecular photoswitches exhibit luminescence switching of QDs based on energy transfer and have garnered attention for their potential applications in sensors and optical memories. In HSs, the chemical composition, such as the number of attached ligands, is inherently distributed, posing challenges for extracting the energy transfer process from the QDs to a single acceptor molecule. The stochastic model, assuming a Poisson distribution for the number of acceptors, proves to be an effective approach for extracting the process.
View Article and Find Full Text PDFClin Transplant Res
September 2025
Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
Eplet mismatch analysis offers a refined approach to assessing donor-recipient compatibility in kidney transplantation, surpassing conventional antigen-level human leukocyte antigen (HLA) matching in predicting immunologic outcomes. By identifying polymorphic amino acid residues on HLA molecules recognized by B cell receptors, this method quantifies immunologic risk. Clinical studies demonstrate that high eplet mismatch loads, particularly at HLA-DQ, are strongly associated with donor-specific antibody development, antibody-mediated rejection, and reduced graft survival.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro 2, 53100 Siena, Italy.
Molecules with an inverted singlet-triplet gap (Δ = - < 0) hold potential for optoelectronic applications as OLEDs and photocatalysis. Despite growing interest, no single-molecule emission from a chiral dye with an inverted gap has been reported, and only one case has shown such emission from supramolecular aggregates. Here, we present the first circularly polarized light emission (CPL) from a chiral molecule exhibiting an inverted singlet-triplet gap.
View Article and Find Full Text PDFMol Psychiatry
September 2025
National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, MA, 02130, USA.
Glial fibrillary acidic protein (GFAP) is an astrocytic marker that can be assessed in blood using single molecule array technology. Recent studies suggest that individuals with posttraumatic stress disorder (PTSD) have suppressed circulating levels of this CNS biomarker. This study examined the hypothesis that PTSD and plasma GFAP levels share common genetic and epigenetic pathways.
View Article and Find Full Text PDFNat Nanotechnol
September 2025
Department of Bioengineering, Rice University, Houston, TX, USA.
Maintaining safe and potent drug levels in vivo is challenging. Multidomain peptides assemble into supramolecular hydrogels with a well-defined, highly porous nanostructure that makes them attractive for drug delivery. However, their ability to extend release is typically limited by rapid drug diffusion.
View Article and Find Full Text PDF