Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Nanomaterials have been shown to promote crop growth, yield and stress resistance. Carbon nanosol (CNS), a type of nanomaterial, is used to regulate tobacco shoot and root growth. However, information about the application of CNS to crop plants, especially tobacco, is still limited. Based on differential expression analysis and trend analysis, several miRNAs (miRN21-Novel-5p-mature, miR319b-Probable-5p-mature, miR160a-c-Known/Probable-5p-mature and miR156c-e-Known-5p-mature/star) and their target genes, including transcription factors (TFs), are likely responsible for the effect of CNS on promoting the growth of tobacco plants. In addition, we characterized nine TFs [Nitab4.5_00001789g0110 (NbbZIP), Nitab4.5_00001176g0010 (NbMYB), Nitab4.5_0001366g0010 (NbNAC), Nitab4.5_00000895g013 (NbMYB), Nitab4.5_0001225g0120 (NbNAC), Nitab4.5_0000202g0230 (NbDof), Nitab4.5_0002241g0010 (NbMYB-related), Nitab4.5_0000410g0060 (NbTCP), and Nitab4.5_0000159g0180 (NbC2H2)] associated with the response of tobacco to CNS according to the differential expression analysis, TF‒gene interaction network analysis and weighted correlation network analysis (WGCNA). Taken together, the findings of our study help understand CNS-mediated growth promotion in tobacco plants. The identification of candidate miRNAs and genes will provide potential support for the use of CNS in tobacco.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664839 | PMC |
http://dx.doi.org/10.1186/s12870-024-05992-8 | DOI Listing |