98%
921
2 minutes
20
Thiadiazines are heterocyclic compounds known for some pharmacological activities. However, the ability of these compounds and their derivatives to act as antibacterial agents and inhibitors of the efflux system in resistant bacteria remains unknown. This study aims to evaluate the antibacterial and NorA efflux pump inhibitory activities of thiadiazine-derived compounds (IJ14, IJ15, IJ16, IJ17, IJ18, IJ19, and IJ20) against the Staphylococcus aureus 1199B strain. Minimum Inhibitory Concentration (MIC) tests and antibacterial activity assessment through NorA efflux system inhibition were performed using microdilution assays in 96-well plates. Additionally, ethidium bromide (EtBr) fluorescence emission assays were conducted to evaluate efflux system inhibition. The methodology revealed that the IJ17 and IJ20 compounds presented MIC values of 256 and 597.3 μg/mL, respectively. The efflux pump inhibition assessment using the microdilution method showed significant results for all compounds, which also increased the fluorescence rates emitted by EtBr. Consequently, thiadiazine-derived compounds exhibit promising results in targeting a key bacterial resistance mechanism, underscoring the need for further studies, such as molecular tests, to evaluate their mechanism of action and clarify the feasibility and efficacy of these compounds as antibacterial agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2024.12.009 | DOI Listing |
Mol Pharm
September 2025
Division of Pharmaceutics and Pharmacology, College of Pharmacy; Center for RNA Nanotechnology and Nanomedicine; James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States.
Liver cancer, particularly hepatocellular carcinoma (HCC), poses significant treatment challenges due to chemoresistance and cancer recurrence. Similar to customs at the border, the liver detoxifies incoming chemicals via efflux pumps and overexpresses ATP-binding cassette (ABC) drug exporters, leading to chemoresistance. ABC contains a multihomosubunit structure and a revolving transport mechanism, actively effluxing drugs from cancer cells, thereby reducing intracellular drug accumulation and therapeutic efficacy.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon.
In Gram-negative bacteria, resistance-nodulation-division (RND)-type efflux pumps, particularly AcrAB-TolC, play a critical role in mediating resistance to antimicrobial agents and toxic metabolites, contributing to multidrug resistance. is an entomopathogenic bacterium that has garnered significant interest due to its production of bioactive specialized metabolites with anti-inflammatory, antimicrobial, and scavenger deterrent properties. In previous work, we demonstrated that AcrAB confers self-resistance to stilbenes in TT01.
View Article and Find Full Text PDFmBio
September 2025
Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.
Multidrug-resistant (MDR) and extensively drug-resistant (XDR) ESKAPE pathogens pose a significant global health threat due to their ability to evade antibiotics through intrinsic and acquired mechanisms. These bacteria, including , , , , , and species, evade antibiotics through intrinsic and adaptive mechanisms. Common strategies include capsule formation, biofilm, β-lactamase production, and efflux activity.
View Article and Find Full Text PDFJ Control Release
September 2025
Di.S.T.A.Bi.F., University of Campania "Luigi Vanvitelli", Caserta, Italy. Electronic address:
Bacterial infections have emerged as a critical global health concern. More specifically, antibiotic resistant infections, severely compromise the effectiveness of standard antimicrobial therapies and prompting the exploration of alternative strategies. Among these, nanocarriers (NCs) have gained considerable interest due to their ability to improve drug solubility, stability, and targeted delivery while minimizing off-target effects.
View Article and Find Full Text PDFBioorg Chem
September 2025
Department of Medicinal Chemistry, Shandong Key Laboratory of Druggability Optimization and Evaluation for Lead Compounds, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China. Electronic address:
A series of novel 3,3-dimethyl-2,3,4,9-tetrahydro-1H-carbazole derivatives were rationally designed, synthesized and evaluated for their biological activity as AcrB inhibitors. The compounds were assessed for their antibiotic potentiating effects, followed by evaluation of Nile Red efflux inhibition, and off-target effects including activity on the outer and inner bacterial membranes. Ten compounds potentiated antibiotic activity at sub-inhibitory concentrations, reducing the minimum inhibitory concentrations (MICs) of at least one of the tested antibiotics by at least 8-fold, with three derivatives (7c, 11g, and 11i) achieving 32-fold MIC reductions at 128 μg/mL.
View Article and Find Full Text PDF