Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Theory predicts that spatial modular networks contain the propagation of local disturbances, but field experimental tests of this hypothesis are lacking. We combined a field experiment with a metacommunity model to assess the role of modularity in buffering the spatial spread of algal turfs in three replicated canopy-dominated macroalgal networks. Experimental networks included three modules where plots with intact canopy cover (nodes) were connected through canopy-thinned corridors. The local perturbation consisted of removal of the canopy and understory species from four nodes within a single module to enable the establishment of algal turfs, which could then spread vegetatively to other untouched nodes through the canopy-thinned links. Results show that algal turfs invade mainly untouched nodes in the perturbed module, in agreement with the hypothesis that modularity can effectively constrain the spread of a spatial perturbation. The metacommunity model supports the empirical findings, illustrating greater resistance to perturbations of modular than random macroalgal canopy networks and making alternative explanations for the observed results unlikely. Evidence that the buffering effect of modularity can operate in natural environmental conditions has important implications for designing more robust networks of protected areas and less-fragile human-dominated fragmented landscapes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2024.11.038 | DOI Listing |