Optimizing broiler growth, health, and meat quality with citric acid- assessing the optimal dose and environmental impact: Citric acid in Broiler Health and Production.

Poult Sci

Animal Nutrition and Feed Science Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea. Electronic ad

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The need for sustainable and safe alternatives to antibiotic growth promoters has driven researchers to explore organic acids (OAs) inclusion in broiler diets. Citric acid (CA), a notable OA, has emerged as a promising alternative due to its various physiological benefits, including improved nutrient digestibility, antioxidant properties, and enhanced weight gain. Despite the improved growth performance, the feed conversion ratio (FCR) does not seem to be consistently affected by CA inclusion. A considerable number of research papers suggest that CA can replace antibiotic growth promoters and has proved to be more effective when combined with other additives like probiotics and microbial phytase. However, despite numerous trials, the near-accurate dose remains in doubt. Dietary addition between 1.65 % and 2.65 % seems to positively affect broiler performance. Being an organic acid, CA brings no risk to the environment and does not economically burden producers. It has the capability to enhance certain meat qualities and extend shelf life. However, there is a risk of acidic stress and liver damage with excessive inclusion. This review study seeks to offer a thorough and all-encompassing summary of the present level of understanding regarding the use of CA supplementation in broiler diets by describing its impacts on growth efficiency, nutrient utilization, intestinal condition, immune response, meat quality, optimal dose, and environmental sustainability. Further research focused on determining precise dosage levels and understanding the synergistic or antagonistic effects of citric acid when combined with other feed additives is essential for optimizing broiler performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728898PMC
http://dx.doi.org/10.1016/j.psj.2024.104668DOI Listing

Publication Analysis

Top Keywords

citric acid
12
optimizing broiler
8
meat quality
8
optimal dose
8
dose environmental
8
antibiotic growth
8
growth promoters
8
broiler diets
8
broiler performance
8
growth
5

Similar Publications

Synthesis of [1-C]2-Oxoglutaric Acid and C Breath Tests Designed to Assess TCA Cycle Flux.

Chem Pharm Bull (Tokyo)

September 2025

Laboratory of Pharmaceutical Analytical Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.

Several approaches for synthesizing [1-C]2-oxoglutaric acid were attempted, and the synthesis was successfully achieved in 4 steps from trimethylsilyl C-cyanide. The C-breath tests on rats were conducted by orally administering the newly synthesized [1-C]2-oxoglutaric acid, the previously prepared [1'-C]citric acid, and [1-C]acetic acid as a control drug, and the results were compared. The results indicate that [1-C]2-oxoglutaric acid and [1'-C]citric acid may serve as potential substrates for assessing the TCA cycle flux.

View Article and Find Full Text PDF

Bio-based cellulose aerogels with liquid absorption and retention capability for sustainable personal hygiene applications.

Int J Biol Macromol

September 2025

School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China. Electronic address:

Efficient water-absorbing and water-holding materials have shown notable promise in various applications, including hygiene products, agriculture, and drug delivery systems. Opposed to traditional absorbents prepared using synthetic polymers, bio-based, environmentally friendly efficient absorbents have attracted more attention from both academia and the industry. Herein, the aerogel absorbents from functional sodium carboxymethyl cellulose (CMCNa), citric acid (CA) crosslinker, and cellulose nanofibers (CNF) have been developed via freeze-drying and cross-linking process.

View Article and Find Full Text PDF

This in vitro study evaluated the effect of proanthocyanidin, palm oil, and vitamin E against initial erosion. Bovine enamel blocks (n = 140) were divided into 14 groups: C+_SnCl2/NaF/Am-F-containing solution (positive control); C-_deionized water (negative control); O_palm oil; P6.5_6.

View Article and Find Full Text PDF

Background: Despite the advancements of pharmacological treatments and gauze dressings in the field of skin wound healing, these methods present numerous limitations. Therefore, developing a multifunctional material capable of efficiently promoting skin wound healing is particularly crucial.

Methods: Citric acid (CA)-modified chitosan (CS) loaded with Shikonin (SK) (CA-CS-SK) hydrogel was prepared via the freeze-thaw method.

View Article and Find Full Text PDF

In recent years, there has been a rapid increase in the incidence of thyroid carcinoma (TC). Our study focuses on the regulatory effect of circular RNAs on metabolism of TC, aiming to provide new insights into the mechanisms of progression and a potential therapeutic target for TC. In this study, we identified high expression levels of circPSD3 in TC tissues through RNA sequencing.

View Article and Find Full Text PDF