98%
921
2 minutes
20
Cell-penetrating peptides (CPP) have gained rapid attention over the last 25 years; this is attributed to their versatility, customisation, and 'Trojan horse' delivery that evades the immune system. However, the current CPP rational design process is limited, as it requires several rounds of peptide synthesis, prediction and wet-lab validation, which is expensive, time-consuming and requires extensive knowledge in peptide chemistry. Artificial intelligence (AI) has emerged as a promising alternative which can augment the design process, for example by determining physiochemical characteristics, secondary structure, solvent accessibility, disorder and flexibility, as well as predicting in vivo behaviour such as toxicity and peptidase degradation. Other more recent tools utilise supervised machine learning (ML) to predict the penetrative ability of an amino acid sequence. The use of AI in the CPP design process has the potential to reduce development costs and increase the chances of success with respect to delivery. This review provides a survey of in silico tools and AI platforms which can be utilised in the design process, and the key features that should be taken into consideration when designing next generation CPPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2024.214153 | DOI Listing |
JMIR Res Protoc
September 2025
School of Rehabilitation Science, University of Saskatchewan, Saskatoon, SK, Canada.
Background: In Canada, the Indigenous population is the youngest and fastest growing, yet ongoing health disparities for Indigenous peoples are widely recognized. There is a concerning lack of research on childhood disabilities and health conditions in Indigenous populations in Canada. For children with disabilities and chronic health conditions, ongoing access to rehabilitation services, such as occupational therapy, physical therapy, speech-language pathology, and audiology, is critical in promoting positive health and developmental outcomes.
View Article and Find Full Text PDFJMIR Cancer
September 2025
iCARE Secure Data Environment & Digital Collaboration Space, NIHR Imperial Biomedical Research Centre, London, United Kingdom.
Background: Electronic health records (EHRs) are a cornerstone of modern health care delivery, but their current configuration often fragments information across systems, impeding timely and effective clinical decision-making. In gynecological oncology, where care involves complex, multidisciplinary coordination, these limitations can significantly impact the quality and efficiency of patient management. Few studies have examined how EHR systems support clinical decision-making from the perspective of end users.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Zeolite-confined Rh-based catalysts have emerged as promising heterogeneous candidates for olefin hydroformylation. However, they face challenges of reactant- and product-induced Rh leaching and aggregation. Herein, zeolite framework-anchored Rh-(O-Zn) sites were designed and are shown to have remarkable activity and stability for gas-phase ethylene hydroformylation.
View Article and Find Full Text PDFAnnu Rev Microbiol
September 2025
4Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France.
Cyanobacteria played a pivotal role in shaping Earth's early history and today are key players in many ecosystems. As versatile and ubiquitous phototrophs, they are used as models for oxygenic photosynthesis, nitrogen fixation, circadian rhythms, symbiosis, and adaptations to harsh environments. Cyanobacterial genomes and metagenomes exhibit high levels of genomic diversity partly driven by gene flow within and across species.
View Article and Find Full Text PDFCien Saude Colet
August 2025
School of Public Health, Harvard University. Boston Estados Unidos.
In this multicenter, cross-sectional and quantitative study we evaluated the influence of urban violence and COVID-19 on the work process and team rapport of community health workers (CHWs) in eight municipalities of Northeastern Brazil. The collected information covered sociodemographics, work routines, exposure to violence, self-efficacy and coronavirus anxiety. A logistic regression was performed using as outcome variable the answer to the question: "Do you think your team work process changed during the pandemic?" The sample included 1,944 CHWs, of whom 56.
View Article and Find Full Text PDF