Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Homologous recombination (HR) is a high-fidelity DNA repair pathway that uses a homologous DNA sequence as a template. Recombinase proteins are the central HR players in the three kingdoms of life. RecA/RadA/Rad51 assemble on ssDNA, generated after the processing of double-strand breaks or stalled replication forks into an active and dynamic presynaptic helical nucleofilament. Presynaptic filament formation is regulated by a series of partners of the recombinase, such as scRad52/hBRCA2 mediators or anti-recombinase proteins, to form an active machinery involved in homology search, pair-matching, and invasion within homologous sequences. During homology search, but also during strand invasion, the multiprotein complexes that form the nucleofilament induce the formation of a variety of DNA intermediate states. Here we present specific approaches to study and characterize the different DNA and DNA-protein intermediates formed during homologous recombination. The combination of powerful electron microscopy and sample preparation methods provides a better understanding of these proteins' molecular activity and their interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-4280-1_12 | DOI Listing |