Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One of the frontiers of nanotechnology is advancing beyond the periodic self-assembly of materials. Icosahedral quasicrystals, aperiodic in all directions, represent one of the most challenging targets that has yet to be experimentally realized at the colloidal scale. Previous attempts have required meticulous human-designed building blocks and often resulted in interactions beyond the current experimental capabilities. In this work, we introduce a framework for generating experimentally accessible designs that self-assemble into quasicrystalline arrangements. We present a design for icosahedral deoxyribonucleic acid (DNA) origami building blocks and demonstrate, through molecular simulations, their successful assembly into a target quasicrystalline structure. Our results highlight the feasibility of using automated design protocols to achieve complex quasicrystalline patterns, with applications in material science and nanotechnology.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c10434DOI Listing

Publication Analysis

Top Keywords

building blocks
8
automating blueprints
4
blueprints assembly
4
assembly colloidal
4
colloidal quasicrystal
4
quasicrystal clusters
4
clusters frontiers
4
frontiers nanotechnology
4
nanotechnology advancing
4
advancing periodic
4

Similar Publications

Harnessing Radical-Based Dynamic Covalent Chemistry and Supramolecular Synthon for Directional Self-Assembly.

J Am Chem Soc

September 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

The discovery of new weak supramolecular interactions and supramolecular synthons is essential for directing self-assembly processes with enhanced precision, diversity, and functionality in complex molecular architectures. Here, we report the controlled self-assembly of diverse supramolecular architectures by a new directional bonding approach through the integration of radical-based dynamic covalent chemistry and supramolecular synthons. A novel macrocyclic synthon, , with a linear direction is constructed via radical-based dynamic covalent bonds from the phenothiazine building block substituted with two dicyanomethyl radicals.

View Article and Find Full Text PDF

PERC: a suite of software tools for the curation of cryoEM data with application to simulation, modeling and machine learning.

Acta Crystallogr F Struct Biol Commun

October 2025

Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom.

Ease of access to data, tools and models expedites scientific research. In structural biology there are now numerous open repositories of experimental and simulated data sets. Being able to easily access and utilize these is crucial to allow researchers to make optimal use of their research effort.

View Article and Find Full Text PDF

Cyclic peptides (CPs) are versatile building blocks whose conformational constraints foster ordered supramolecular architectures with potential in biomedicine, nanoelectronics, and catalysis. Herein, we report the development of biomimetic antifreeze materials by conjugating CPs bearing ice-binding residues to 4-arm polyethylene glycol (PEG) via click chemistry. The concentration-dependent self-assembly of these CP-PEG conjugates induces programmable morphological transitions, forming nanotube networks above the critical aggregation concentration (CAC) and two-dimensional nanosheet networks near the CAC.

View Article and Find Full Text PDF

A spatial-frequency hybrid restoration network for JPEG compressed image deblurring.

Neural Netw

September 2025

organization=Chongqing Key Laboratory of Computer Network and Communication Technology, School of Computer Science and Technology (National Exemplary Software School), Chongqing University of Posts and Telecommunications, city=Chongqing, postcode=400065, country=China. Electronic address: tianh519@1

Image deblurring and compression-artifact removal are both ill-posed inverse problems in low-level vision tasks. So far, although numerous image deblurring and compression-artifact removal methods have been proposed respectively, the research for explicit handling blur and compression-artifact coexisting degradation image (BCDI) is rare. In the BCDI, image contents will be damaged more seriously, especially for edges and texture details.

View Article and Find Full Text PDF

Photochemical Synthesis of Ynones from Aryl Aldehydes and Sulfone-Based Alkynes.

J Org Chem

September 2025

School of Chemistry, O'Brien Centre for Science, University College Dublin, Dublin 4, Belfield D04 N2E5, Ireland.

Ynones are attractive molecular building blocks owing to their electrophilic character, which can be exploited in a variety of functionalization strategies, giving rise to valuable reaction products. This work presents a photochemical strategy for the direct generation of ynones from aldehydes and substituted alkynes bearing radicofugal groups, such as sulfones. Using TBADT (tetrabutylammonium decatungstate) as a photocatalyst, the direct photochemical synthesis of a variety of ynones is achieved in high yields and short reaction times.

View Article and Find Full Text PDF