98%
921
2 minutes
20
Two new species of dark-body snake eels are described based on specimens collected from Taiwan. has a long tail; dorsal-fin origin above posterior third of pectoral fin; tip of lower jaw anterior to anterior-nostril tube; two simple, pointed protrusions along upper lip; preoperculomandibular pores 6 or 7 + 3; teeth on jaws and vomer mostly uniserial, except for biserial on posterior portion of maxilla and anterior portion of symphysis of dentary; vertebral formula 12-55-153 and median fins with narrow dark margins, except the pale fin origins. has a dorsal-fin origin well behind gill opening; mainly 4 rows of teeth on jaws; no protrusions along upper lip; a smaller head; mean vertebral formula 24-64-163 and pale median fins. Based on some recent papers and our result, a revised key to species is herein provided.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650213 | PMC |
http://dx.doi.org/10.3897/zookeys.1220.126337 | DOI Listing |
Zookeys
December 2024
Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan National Taiwan Ocean University Keelung Taiwan.
Two new species of dark-body snake eels are described based on specimens collected from Taiwan. has a long tail; dorsal-fin origin above posterior third of pectoral fin; tip of lower jaw anterior to anterior-nostril tube; two simple, pointed protrusions along upper lip; preoperculomandibular pores 6 or 7 + 3; teeth on jaws and vomer mostly uniserial, except for biserial on posterior portion of maxilla and anterior portion of symphysis of dentary; vertebral formula 12-55-153 and median fins with narrow dark margins, except the pale fin origins. has a dorsal-fin origin well behind gill opening; mainly 4 rows of teeth on jaws; no protrusions along upper lip; a smaller head; mean vertebral formula 24-64-163 and pale median fins.
View Article and Find Full Text PDFJ Therm Biol
July 2014
School of Biological Sciences, Flinders University, Bedford Park 5042, Australia; Vertebrates Section, South Australian Museum, North Terrace, Adelaide 5000, Australia. Electronic address:
The color-mediated thermoregulation hypothesis predicts that dark body color (low reflectance) allows organisms to gain heat more efficiently than does pale coloration (high reflectance). This prediction is intuitive and widely assumed to be true, but has poor empirical support. We used rare, captive-bred, mutant melanistic, albino and wild-type Australian bluetongue lizards, Tiliqua scincoides to measure the effects of skin reflectance on the heating and cooling rates.
View Article and Find Full Text PDF