98%
921
2 minutes
20
Background: Underground research laboratories (URLs) provide a window on the deep biosphere and enable investigation of potential microbial impacts on nuclear waste, CO and H stored in the subsurface. We carried out the first multi-year study of groundwater microbiomes sampled from defined intervals between 140 and 400 m below the surface of the Horonobe and Mizunami URLs, Japan.
Results: We reconstructed draft genomes for > 90% of all organisms detected over a four year period. The Horonobe and Mizunami microbiomes are dissimilar, likely because the Mizunami URL is hosted in granitic rock and the Horonobe URL in sedimentary rock. Despite this, hydrogen metabolism, rubisco-based CO fixation, reduction of nitrogen compounds and sulfate reduction are well represented functions in microbiomes from both URLs, although methane metabolism is more prevalent at the organic- and CO-rich Horonobe URL. High fluid flow zones and proximity to subsurface tunnels select for candidate phyla radiation bacteria in the Mizunami URL. We detected near-identical genotypes for approximately one third of all genomically defined organisms at multiple depths within the Horonobe URL. This cannot be explained by inactivity, as in situ growth was detected for some bacteria, albeit at slow rates. Given the current low hydraulic conductivity and groundwater compositional heterogeneity, ongoing inter-site strain dispersal seems unlikely. Alternatively, the Horonobe URL microbiome homogeneity may be explained by higher groundwater mobility during the last glacial period. Genotypically-defined species closely related to those detected in the URLs were identified in three other subsurface environments in the USA. Thus, dispersal rates between widely separated underground sites may be fast enough relative to mutation rates to have precluded substantial divergence in species composition. Species overlaps between subsurface locations on different continents constrain expectations regarding the scale of global subsurface biodiversity.
Conclusions: Our analyses reveal microbiome stability in the sedimentary rocks and surprising microbial community compositional and genotypic overlap over sites separated by hundreds of meters of rock, potentially explained by dispersal via slow groundwater flow or during a prior hydrological regime. Overall, microbiome and geochemical stability over the study period has important implications for underground storage applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657941 | PMC |
http://dx.doi.org/10.1186/s40793-024-00649-3 | DOI Listing |
Environ Microbiome
December 2024
Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA.
Background: Underground research laboratories (URLs) provide a window on the deep biosphere and enable investigation of potential microbial impacts on nuclear waste, CO and H stored in the subsurface. We carried out the first multi-year study of groundwater microbiomes sampled from defined intervals between 140 and 400 m below the surface of the Horonobe and Mizunami URLs, Japan.
Results: We reconstructed draft genomes for > 90% of all organisms detected over a four year period.
Microb Ecol
October 2024
Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, Japan.
Deep underground galleries are used to access the deep biosphere in addition to mining and other engineering applications, such as geological disposal of radioactive waste. Fracture networks developed in the excavation damaged zone (EDZ) are concerned with accelerating mass transport, where microbial colonization might be possible due to the availability of space and nutrients. In this study, microbial biofilms at EDZ fractures were investigated by drilling from a 350-m-deep gallery and subsequent borehole logging at the Horonobe Underground Research Laboratory (URL).
View Article and Find Full Text PDFChemosphere
February 2022
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 1-1 Katahira, 2-chome, Aoba-ku, Sendai, 980-8577, Japan.
To better understand the migration behavior of actinides in deep groundwater (GW), the interactions between doped tracers and deep GW components were investigated. La, Sm, Ho, and U tracers (10 or 100 ppb) were doped into sedimentary rock GW samples collected from 250 to 350 m deep boreholes in the experimental gallery of the Horonobe Underground Research Laboratory (URL), Hokkaido, Japan. To evaluate the effect of GW composition on the chemical speciation of actinides, the same tracers were doped into crystalline rock GW samples collected from 300 to 500 m deep boreholes in the experimental gallery at the Mizunami URL, Gifu Prefecture, Japan.
View Article and Find Full Text PDFWater Res
March 2013
Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan.
The saline groundwater collected at a depth of about 500 m in Horonobe, Japan, where an underground research laboratory (URL) has been built, is rich in saline (Na 4900 ppm, Cl 7600 ppm), iodine (42 ppm), and methane gas. We analyzed the colloids and ions of this groundwater mainly by employing a size exclusion chromatography (SEC) coupled on-line to ultraviolet-visible (UV-Vis) detection and inductively coupled plasma mass spectrometry (ICP-MS) technique and focused on the speciation of uranium and iodine, both of which are of particular importance for radioactive waste disposal. For this purpose, the groundwater sample was introduced to SEC columns after being passed through a 0.
View Article and Find Full Text PDF