A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Double mutant DNMT3A AML: a unique subtype experiencing increased DNA damage and poor prognosis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mutation of DNMT3A, encoding a de novo methyltransferase essential for cytosine methylation, is a common early event in clonal hematopoiesis (CH) and adult acute myeloid leukemia (AML). Spontaneous deamination of methylated cytosines damages DNA, which is repaired by the base excision repair (BER) enzymes methyl-CpG binding domain 4 (MBD4) and thymine DNA glycosylase (TDG). Congenital MBD4 deficiency has been linked to early-onset CH and AML and is marked by exceedingly high levels of DNA damage and mutation of DNMT3A. Strikingly, wild-type (WT) DNMT3A binds TDG, thereby potentiating its repair activity. Because TDG is the only remaining BER enzyme in MBD4-deficient patients with AML capable of repairing methylation damage, we investigated whether mutant DNMT3A negatively affects the repair function of TDG. We found that, although WT DNMT3A stimulates TDG function, mutant DNMT3A impairs TDG-mediated repair of DNA damage in vitro. In light of this finding and to extrapolate our observations to the broader AML patient population, we investigate here the genetic profiles and survival outcomes of patients with AML with single mutant (SM) vs double mutant (DM) DNMT3A. Patients with DM DNMT3A AML show a characteristic driver mutation landscape and reduced overall survival compared with patients with SM DNMT3A AML. Importantly, whole-genome sequencing showed a trend for increased DNA damage in primary DM DNMT3A AML samples, especially when DNMT3A mutations are located at the DNMT3A-TDG interaction interface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954108PMC
http://dx.doi.org/10.1182/bloodadvances.2024014698DOI Listing

Publication Analysis

Top Keywords

mutant dnmt3a
16
dnmt3a aml
16
dna damage
16
dnmt3a
12
aml
9
double mutant
8
increased dna
8
mutation dnmt3a
8
patients aml
8
patients dnmt3a
8

Similar Publications