Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background And Purpose: Massive vaccine distribution is a crucial step to prevent the spread of SARS-CoV2 as the causative agent of COVID-19. This research aimed to design the multi-epitope self-amplifying mRNA (saRNA) vaccine from the spike and nucleocapsid proteins of SARS-CoV2.
Experimental Approach: Commonly distributed constructions class I and II alleles of the Indonesian population were used to determine peptide sequences that trigger this population's high specificity T-cell response. The best vaccine candidate was selected through the analysis of tertiary structure validation and molecular docking of each candidate with TLR-4, TLR-8, HLA-A*24:02, and HLA-DRB1*04:05. The selected multi-epitope vaccine combined with the gene encoding the replication machinery that allows the RNA amplification in the host cell.
Findings/results: Seven B-cell and four T-cell epitopes from the protein target were highly antigenic and conserved, non-allergen, non-toxic, and hydrophilic. Tertiary structure validation then determined the best multi-epitope construction with 269 AA in length containing hBD-2 adjuvant and PADRE. Most residues are predicted to be accessible by solvent and show high population coverage (99,26%). Molecular docking analysis demonstrated a stable and strong binding affinity with immune receptors. A recombinant plasmid as the template for mRNA production was constructed by inserting the multi-epitope DNA and non-structural polyprotein 1-4 gene of VEEV, which encodes the RNA replication complex to the cloning site of pcDNA3.1(+).
Conclusion And Implication: , design of self-amplifying mRNA could be a potential COVID-19 vaccine candidate since its ability to be amplified in the host cell can efficiently reduce the intake doses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648349 | PMC |
http://dx.doi.org/10.4103/RPS.RPS_91_23 | DOI Listing |