Optimising Sampling Design for Landscape Genomics.

Mol Ecol Resour

Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Landscape genomic approaches for detecting genotype-environment associations (GEA), isolation by distance (IBD) and isolation by environment (IBE) have seen a dramatic increase in use, but there have been few thorough analyses of the influence of sampling strategy on their performance under realistic genomic and environmental conditions. We simulated 24,000 datasets across a range of scenarios with complex population dynamics and realistic landscape structure to evaluate the effects of the spatial distribution and number of samples on common landscape genomics methods. Our results show that common analyses are relatively robust to sampling scheme as long as sampling covers enough environmental and geographic space. We found that for detecting adaptive loci and estimating IBE, sampling schemes that were explicitly designed to increase coverage of available environmental space matched or outperformed sampling schemes that only considered geographic space. When sampling does not cover adequate geographic and environmental space, such as with transect-based sampling, we detected fewer adaptive loci and had higher error when estimating IBD and IBE. We found that IBD could be detected with as few as nine sampling sites, while large sample sizes (e.g., greater than 100 individuals) were crucial for detecting adaptive loci and IBE. We also demonstrate that, even with optimal sampling strategies, landscape genomic analyses are highly sensitive to landscape structure and migration-when spatial autocorrelation and migration are weak, common GEA methods fail to detect adaptive loci.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1755-0998.14052DOI Listing

Publication Analysis

Top Keywords

adaptive loci
16
sampling
9
landscape genomics
8
landscape genomic
8
landscape structure
8
geographic space
8
detecting adaptive
8
sampling schemes
8
environmental space
8
landscape
6

Similar Publications

Integration of multi-omics resources reveals genetic features associated with environmental adaptation in the Wuzhishan pig genome.

J Therm Biol

September 2025

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.

View Article and Find Full Text PDF

Legumes are essential for agriculture and food security. Biotic and abiotic stresses pose significant challenges to legume production, lowering productivity levels. Most legumes must be genetically improved by introducing alleles that give pest and disease resistance, abiotic stress adaptability, and high yield potential.

View Article and Find Full Text PDF

First isolation and identification of in sheep and goats: new insights and implications for veterinary medicine.

Front Microbiol

August 2025

Animal Health Laboratory, EU/WOAH and National Reference Laboratory for Brucellosis, Anses/Paris-Est University, Maisons-Alfort, France.

Many species from the genus are causative agents of the bacterial zoonosis brucellosis. Until recently, it was generally believed that these bacteria exhibit strict host specificity; however, recent findings suggest otherwise. is an atypical species, no threat to humans, with a broad host spectrum, primarily found in wildlife and rodents, and is the only species isolated from soil, aquatic environments, and frogs, suggesting its environmental persistence and adaptability to diverse ecological niches.

View Article and Find Full Text PDF

Evaluating the diagnostic capabilities of nanopore sequencing for detection in blacklegged ticks.

bioRxiv

August 2025

Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America.

Ticks pose substantial threats to public health. Blacklegged ticks () are responsible for most tick-borne diseases in the US, transmitting seven human pathogens. Molecular surveillance for tick-borne pathogens has been outpaced by their emergence, revealing a critical need to develop agnostic strategies that characterize emerging and putative pathogens.

View Article and Find Full Text PDF

Copy number variation (CNV) in gene loci in animals can be driven by adaption to the environment. The relationship between CNV in genes for amylase (), which hydrolyzes starch, and dietary adaptation has been well studied. Copy number (CN) of is higher in human populations with high-starch diets, compared with those with low-starch diets.

View Article and Find Full Text PDF