A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Analysis of high-molecular-weight proteins using MALDI-TOF MS and machine learning for the differentiation of clinically relevant Clostridioides difficile ribotypes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Clostridioides difficile is the main cause of antibiotic related diarrhea and some ribotypes (RT), such as RT027, RT181 or RT078, are considered high risk clones. A fast and reliable approach for C. difficile ribotyping is needed for a correct clinical approach. This study analyses high-molecular-weight proteins for C. difficile ribotyping with MALDI-TOF MS.

Methods: Sixty-nine isolates representative of the most common ribotypes in Europe were analyzed in the 17,000-65,000 m/z region and classified into 4 categories (RT027, RT181, RT078 and 'Other RTs'). Five supervised Machine Learning algorithms were tested for this purpose: K-Nearest Neighbors, Support Vector Machine, Partial Least Squares-Discriminant Analysis, Random Forest (RF) and Light-Gradient Boosting Machine (GBM).

Results: All algorithms yielded cross-validation results > 70%, being RF and Light-GBM the best performing, with 88% of agreement. Area under the ROC curve of these two algorithms was > 0.9. RT078 was correctly classified with 100% accuracy and isolates from the RT181 category could not be differentiated from RT027.

Conclusions: This study shows the possibility of rapid discrimination of relevant C. difficile ribotypes by using MALDI-TOF MS. This methodology reduces the time, costs and laboriousness of current reference methods.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10096-024-05023-2DOI Listing

Publication Analysis

Top Keywords

high-molecular-weight proteins
8
machine learning
8
clostridioides difficile
8
difficile ribotypes
8
rt027 rt181
8
rt181 rt078
8
difficile ribotyping
8
difficile
5
analysis high-molecular-weight
4
proteins maldi-tof
4

Similar Publications