Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Hierarchical supramolecular frameworks are being designed and constructed for various applications, yet the controlled assembly and process understanding incorporating giant building blocks remains a great challenge. Here, we report a strategy of "rivet" substitution and "hinge" linkage for the controlled assembly of the hierarchical supramolecular framework. The replacement of two "rivet" ethylene glycol (EG) molecules for triangular prism [Zn] (a small block in 1) with a 1,3-propanediol (PDO) provides space for a "hinge" linkage from adjacent ligands, thus providing a hierarchical (from micro- to mesopores, from the internal cavity to external surface) supramolecular framework (2) based on a coordinative subblock with the record number of zinc ions ([Zn]). Time-dependent powder X-ray diffraction and ESI-MS technology were used to assess the evolution process: logically progressing from [Zn] to [Zn], then to [Zn], and finally to [Zn]. The sequential transformation entails two types of half-opening cavities and two types of internal microcages. Further aggregation of [Zn] in dia topology engenders the formation of a one-dimensional channel (10 Å), and an additional mesocage with a volume of 16 × 16 × 55 Å. The diverse pore system exhibits an impressive uptake capability (3.19 g g) for iodine vapor at 75 °C and effective ethylene purification. Our investigations represent a valuable avenue for assembling a giant subblock and hierarchical supramolecular framework, facilitating multi-functional molecular accommodation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639904 | PMC |
http://dx.doi.org/10.1039/d4sc04474f | DOI Listing |